OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 5 — May. 5, 2009

Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging

Jörgen Thaung, Per Knutsson, Zoran Popovic, and Mette Owner-Petersen  »View Author Affiliations


Optics Express, Vol. 17, Issue 6, pp. 4454-4467 (2009)
http://dx.doi.org/10.1364/OE.17.004454


View Full Text Article

Enhanced HTML    Acrobat PDF (10776 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present analysis and preliminary laboratory testing of a real-time dual-conjugate adaptive optics (DCAO) instrument for ophthalmology that will enable wide-field high resolution imaging of the retina in vivo. The setup comprises five retinal guide stars (GS) and two deformable mirrors (DM), one conjugate to the pupil and one conjugate to a plane close to the retina. The DCAO instrument has a closed-loop wavefront sensing wavelength of 834 nm and an imaging wavelength of 575 nm. It incorporates an array of collimator lenses to spatially filter the light from all guide stars using one adjustable iris, and images the Hartmann patterns of multiple reference sources on a single detector. Zemax simulations were performed at 834 nm and 575 nm with the Navarro 99 and the Liou-Brennan eye models. Two correction alternatives were evaluated; conventional single conjugate AO (SCAO, using one GS and a pupil DM) and DCAO (using multiple GS and two DM). Zemax simulations at 575 nm based on the Navarro 99 eye model show that the diameter of the corrected field of view for diffraction-limited imaging (Strehl ≥ 0.8) increases from 1.5 deg with SCAO to 6.5 deg using DCAO. The increase for the less stringent condition of a wavefront error of 1 rad or less (Strehl ≥ 0.37) is from 3 deg with SCAO to approximately 7.4 deg using DCAO. Corresponding results for the Liou-Brennan eye model are 3.1 deg (SCAO) and 8.2 deg (DCAO) for Strehl ≥ 0.8, and 4.8 deg (SCAO) and 9.6 deg (DCAO) for Strehl ≥ 0.37. Potential gain in corrected field of view with DCAO is confirmed both by laboratory experiments on a model eye and by preliminary in vivo imaging of a human eye.

© 2009 Optical Society of America

OCIS Codes
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.7326) Vision, color, and visual optics : Visual optics, modeling
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: December 18, 2008
Revised Manuscript: February 19, 2009
Manuscript Accepted: March 2, 2009
Published: March 5, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Jörgen Thaung, Per Knutsson, Zoran Popovic, and Mette Owner-Petersen, "Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging," Opt. Express 17, 4454-4467 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-6-4454


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Newton, Opticks, or A treatise of the reflections, refractions, inflections & colours of light (New York, Dover publ. 1952).
  2. H. W. Babcock, "The Possibility of compensating astronomical seeing," Publ. Astron. Soc. Pacif. 65, 229-236 (1953). [CrossRef]
  3. R. Foy and A. Labeyrie, "Feasibility of adaptive telescope with laser probe," Astron. Astrophys. 152, 29-31 (1985).
  4. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  5. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, "Organization of the human trichromatic cone mosaic," J. Neurosci. 25, 9669-9679 (2005). [CrossRef] [PubMed]
  6. D. L. Fried, "Anisoplanatism in adaptive optics," J. Opt. Soc. Am. 72, 52-61 (1982). [CrossRef]
  7. R. H. Dicke, "Phase-contrast detection of telescope seeing errors and their correction," Astrophys J. 198, 605-615 (1975). [CrossRef]
  8. J. M. Beckers, "Increasing the size of the isoplanatic patch with multiconjugate adaptive optics," in ESO Conference and Workshop on Very Large Telescopes and their Instrumentation. Garching, Germany: European Southern Observatory (ESO) (1988).
  9. I. Sharf, K. Bell, D. Crampton, J. Fitzsimmons, G. Herriot, L. Jolissaint, B. Lee, H. Richardson, D. van der Kamp, and J.-P. Veran, "Design of the dual conjugate adaptive optics test-bed," in Beyond conventional adaptive optics: a conference devoted to the development of adaptive optics for extremely large telescopes. Venice, Italy: European Southern Observatory (ESO) (2001).
  10. B. Wallace, C. Bradley, H. Richardson, J. Kennedy, O. Keskin, P. Hampton, D. Robertson, L. Jolissaint, and A. Hilton, "Dual conjugate adaptive optics testbed: progress report," Proc. SPIE 5169, 255-261 (2003). [CrossRef]
  11. P. A. Knutsson and M. Owner-Petersen, "Emulation of dual-conjugate adaptive optics on an 8-m class telescope," Opt. Express 11, 2231-2237 (2003). [CrossRef] [PubMed]
  12. M. Langlois, C. Saunter, C. Dunlop, R. Myers, and G. Love, "Multiconjugate adaptive optics: laboratory experience," Opt. Express 12, 1689-1699 (2004). [CrossRef] [PubMed]
  13. A. V. Goncharov, J. C. Dainty, S. Esposito, and A. Puglisi, "Laboratory MCAO test-bed for developing wavefront sensing concepts," Opt. Express 13, 5580-5590 (2005). [CrossRef] [PubMed]
  14. O. von der Lühe, T. Berkefeld, and D. Soltau, "Multi-conjugate solar adaptive optics at the Vacuum Tower Telescope on Tenerife," C. R. Physique 6, 1139-1147 (2005). [CrossRef]
  15. E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and The CAMCAO Consortium," On-sky Testing of the Multi-Conjugate Adaptive Optics Demonstrator," The Messenger,  129, 8-13 (2007).
  16. P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, "Multiconjugate adaptive optics applied to an anatomically accurate human eye model," Opt. Express 14, 8019-8030 (2006). [CrossRef] [PubMed]
  17. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13, 024008 (2008). [CrossRef] [PubMed]
  18. W. S. Stiles and B. H. Crawford, "The luminous efficiency of rays entering the eye pupil at different points," Proc. R. Soc. B. 112, 428-450 (1933). [CrossRef]
  19. D. Landell, Implementation and optimization of a multi conjugate adaptive optics software system for vision research (Göteborg, Chalmers University of Technology 2005).
  20. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A 16, 1881-1891 (1999). [CrossRef]
  21. H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1694 (1997). [CrossRef]
  22. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990). [CrossRef] [PubMed]
  23. S. B. Howell, Handbook of CCD Astronomy (Cambridge University Press, Cambridge, U.K., 2000)
  24. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990). [CrossRef] [PubMed]
  25. P. Artal, A. Guirao, E. Berrio, D. R. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vis. 1, 1-8 (2001). [CrossRef]
  26. E. Dalimier and J. C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express. 13, 4275-4285 (2005). [CrossRef] [PubMed]
  27. D. C. Johnston and B. M. Welsh, "Analysis of multiconjugate adaptive optics," J. Opt. Soc. Am. A 11, 394-408 (1994). [CrossRef]
  28. R. Navarro, J. Santamaría, and J. Bescós, ‘‘Accommodation-dependent model of the human eye with aspherics,’’J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  29. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, "Wide-angle chromatic aberration corrector for the human eye," J. Opt. Soc. Am. A 24, 1538-1544 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited