OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 5 — May. 5, 2009

Nanoscale optical field localization by resonantly focused plasmons

Liang Feng, Derek Van Orden, Maxim Abashin, Qian-Jin Wang, Yan-Feng Chen, Vitaliy Lomakin, and Yeshaiahu Fainman  »View Author Affiliations


Optics Express, Vol. 17, Issue 6, pp. 4824-4832 (2009)
http://dx.doi.org/10.1364/OE.17.004824


View Full Text Article

Enhanced HTML    Acrobat PDF (430 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate use of plasmonic resonant phenomena combined with strong field localization to enhance efficiency of confining optical fields in a Si waveguide. Our approach utilizes a plasmonic resonant nano-focusing-antenna (RNFA), that simultaneously supports several focusing mechanisms in a single nanostructure, integrated with a lossless Si waveguide utilized with silicon-on-insulator (SOI) technology, to achieve a sub-diffraction limited focusing with a nanoscale (deeply subwavelength) spot size. The metallic RNFA effectively converts an incoming propagating waveguide mode to a localized resonant plasmon mode in an ultrasmall volume in all 3 dimensions. The near-field optical measurements of the fabricated RNFA using heterodyne near-field scanning optical microscope (H-NSOM) validate the theoretical predictions showing strong optical field localization.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 3, 2009
Revised Manuscript: March 3, 2009
Manuscript Accepted: March 9, 2009
Published: March 11, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Liang Feng, Derek Van Orden, Maxim Abashin, Qian-Jin Wang, Yan-Feng Chen, Vitaliy Lomakin, and Yeshaiahu Fainman, "Nanoscale optical field localization by resonantly focused plasmons," Opt. Express 17, 4824-4832 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-6-4824


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1998).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003). [CrossRef] [PubMed]
  3. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 315, 189-193 (2006). [CrossRef]
  4. Z. Liu, H. Lee, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007). [CrossRef] [PubMed]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-547 (2005). [CrossRef] [PubMed]
  6. L. Pang, G. Hwang, B. Slutsky, and Y. Fainman "Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91,123112 (2007). [CrossRef]
  7. W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, "Light delivery techniques for heat-assisted magnetic recording," Jpn. J. Appl. Phys. 42,981-988 (2003). [CrossRef]
  8. R. Hooper, T. W. Preist, and J. R. Sambles, "Making tunnel barriers (including metals) transparent," Phys. Rev. Lett. 97,053902 (2006). [CrossRef] [PubMed]
  9. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5,1726-1729 (2005). [CrossRef] [PubMed]
  10. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5,1399-1402 (2005). [CrossRef] [PubMed]
  11. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Dielectric optical elements for surface plasmons," Opt. Lett. 30,893-895 (2005). [CrossRef] [PubMed]
  12. R. Rokitski, K. A. Tetz, and Y. Fainman, "Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization," Phys. Rev. Lett. 95,177401 (2005). [CrossRef] [PubMed]
  13. L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91,081101 (2007). [CrossRef]
  14. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93,137404 (2004). [CrossRef] [PubMed]
  15. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritions," Phys. Rev. Lett. 100,023901 (2008). [CrossRef] [PubMed]
  16. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, "Local electric field enhancement during nanofocusing of plasmons by a tapered gap," Phys. Rev. B 75,035431 (2007). [CrossRef]
  17. E. Verhagen, L. Kuipers, and A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7,334-337 (2007). [CrossRef] [PubMed]
  18. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source," Nano Lett. 7,2784-2788 (2007). [CrossRef] [PubMed]
  19. E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16,1685-1706 (2004). [CrossRef]
  20. C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, "Localized surface plasmon resonances in aluminum nanodisks," Nano Lett. 8,1461-1471 (2008). [CrossRef] [PubMed]
  21. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasenstive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5,119-124 (2005). [CrossRef] [PubMed]
  22. M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, and M. Kreiter, "Photoemission electron microscopy as a tool for the investigation of optical near fields," Phys. Rev. Lett. 95,047601 (2005). [CrossRef] [PubMed]
  23. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6,355-360 (2006). [CrossRef] [PubMed]
  24. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308,1607-1609 (2005). [CrossRef] [PubMed]
  25. R A. Alu and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Phys. Rev. Lett. 101, 043901 (2008). [CrossRef] [PubMed]
  26. A. Nesci, and Y. Fainman, "Complex amplitude of an ultrashort pulse with femtosecond resolution in a waveguide using a coherent NSOM at 1550 nm," Proc. SPIE 5181,62-69 (2003). [CrossRef]
  27. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis (Chapman & Hall/CRC, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited