OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging

Ruei-Yu He, Yuan-Deng Su, Keng-Chi Cho, Chun-Yun Lin, Nan-Shan Chang, Chih-Han Chang, and Shean-Jen Chen  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 5987-5997 (2009)
http://dx.doi.org/10.1364/OE.17.005987


View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A surface plasmon-enhanced two-photon total-internal-reflection fluorescence (TIRF) microscope has been developed to provide fluorescent images of living cell membranes. The proposed microscope with the help of surface plasmons (SPs) not only provides brighter fluorescent images based on the mechanism of local electromagnetic field enhancement, but also reduces photobleaching due to having a shorter fluorophore lifetime. In comparison with a one-photon TIRF, the two-photon TIRF can achieve higher signal-to-noise ratio cell membrane imaging due its smaller excitation volume and lower scattering. By combining the SP enhancement and two-photon excitation TIRF, the microscope has demonstrated it’s capability for brighter and more contrasted fluorescence membrane images of living monkey kidney COS-7 fibroblasts transfected with an EYFP-MEM or EGFP-WOX1 construct.

© 2009 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 6, 2009
Revised Manuscript: March 22, 2009
Manuscript Accepted: March 22, 2009
Published: March 30, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Ruei-Yu He, Yuan-Deng Su, Keng-Chi Cho, Chun-Yun Lin, Nan-Shan Chang, Chih-Han Chang, and Shean-Jen Chen, "Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging," Opt. Express 17, 5987-5997 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-8-5987


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
  2. D. Toomre and D. J. Manstein, "Lighting up the cell surface with evanescent wave microscopy," Trends Cell Biol. 11, 298-303 (2001). [CrossRef] [PubMed]
  3. G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, "Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances," J. Cell Sci. 103, 491-499 (1992). [PubMed]
  4. S. E. Sund and D. Axelrod, "Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching," Biophys. J. 79, 1655-1669 (2000). [CrossRef] [PubMed]
  5. W. J. Betz, F. Mao, and C. B. Smith, "Imaging exocytosis and endocytosis," Curr. Opin. Neurobiol. 6, 365-371 (1996). [CrossRef] [PubMed]
  6. R. Sailer, W. S. Strauss, H. Emmert, K. Stock, R. Steiner, and H. Schneckenburger, "Plasma membrane associated location of sulfonated meso-tetraphenylporphyrins of different hydrophilicity probed by total internal reflection fluorescence spectroscopy," Photochem. Photobiol. 71, 460-465 (2000). [CrossRef] [PubMed]
  7. A. Rohrbach, "Observing secretory granules with a multiangle evanescent wave microscope," Biophys. J. 78, 2641-2654 (2000). [CrossRef] [PubMed]
  8. F. Schapper, J. T. Goncalves, and M. Oheim, "Fluorescence imaging with two-photon evanescent-wave excitation," Eur. Biophys. J. 32, 635-643 (2003). [CrossRef] [PubMed]
  9. M. Oheim and F. Schapper, "Non-linear evanescent-field imaging," J. Phys. D: Appl. Phys. 38, R185-R197 (2005). [CrossRef]
  10. Z. Huang and N. L. Thompson, "Theory for two-photon excitation in pattern photobleaching with evanescent illumination," Biophys. Chem. 47, 241-249 (1993). [CrossRef] [PubMed]
  11. G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M.A. Bader, G. Marowsky, and S. Soria, "Evanescent-field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides," Appl. Phys. B 73, 869-871 (2001). [CrossRef]
  12. S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Enhanced two-photon fluorescence excitation by resonant grating waveguide structures," Opt. Lett. 29, 1989-1991 (2004). [CrossRef] [PubMed]
  13. M. Kiguchi, M. Kato, M. Okunaka, and Y. Taniguchi, "New method of measuring second harmonic generation efficiency using powder crystals," Appl. Phys. Lett. 60, 1933-1935 (1992). [CrossRef]
  14. N. Bloembergen and P.S. Pershan, "Light waves at the boundary of nonlinear media," Phys. Rev. 128, 602-622 (1962). [CrossRef]
  15. J. W. Chon, M. Gu, C. Bullen, and P. Mulvaney, "Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection," Opt. Lett. 28, 1930-1932 (2003). [CrossRef] [PubMed]
  16. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005). [CrossRef] [PubMed]
  17. E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D: Appl. Phys. 41, 1-31(2008). [CrossRef]
  18. R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S.-J. Chen, "Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy," Opt. Express 14, 9307-9316 (2006). [CrossRef] [PubMed]
  19. F. Yu, B. Persson, S. Lofas, and W. Knoll, "Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level," Anal. Chem. 76, 6765-6770 (2004). [CrossRef] [PubMed]
  20. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004). [CrossRef] [PubMed]
  21. O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, "Plasmonic enhancement of fluorescence for sensor applications," Sens. Actuators B 107, 148-153 (2005). [CrossRef]
  22. G. Raschke, S. Kowarik, T. Franzl, C. So1nnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Ku1rzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003). [CrossRef]
  23. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano Lett. 5, 829-835 (2005). [CrossRef] [PubMed]
  24. H. Kano and S. Kawata, "Two-photon-excited fluorescence enhanced by a surface plasmon," Opt. Lett. 21, 1848-1850 (1996). [CrossRef] [PubMed]
  25. W. Wenseleers, F. Stellacci, T. M. Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, "Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters," J. Phys. Chem. B 106, 6853-6863 (2002). [CrossRef]
  26. I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, "Directional two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005). [CrossRef]
  27. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, "Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy," Opt. Lett. 28, 713-715 (2003). [CrossRef] [PubMed]
  28. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).
  29. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  30. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  31. W. H. Weber and C. F. Eagen, "Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal," Opt. Lett. 4, 236-238 (1979). [CrossRef] [PubMed]
  32. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005). [CrossRef] [PubMed]
  33. T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 171, 115-130 (2000). [CrossRef]
  34. C. D. Geddes and J. R. Lakowicz, "Metal-enhanced fluorescence," J. Fluor. 12, 121-129 (2002). [CrossRef]
  35. J. R. Lakowicz, "Radiative decay engineering: biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001). [CrossRef] [PubMed]
  36. N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, "Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity," J. Bio. Chem. 276, 3361-3370 (2001). [CrossRef]
  37. N. S. Chang, L. J. Hsu, Y. S. Lin, F. J. Lai, and H. M. Sheu, "WW domain-containing oxidoreductase: a candidate tumor suppressor," Trends Mol. Med. 13, 12-22 (2006). [CrossRef] [PubMed]
  38. Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, "Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-?B, JNK1, p53 and WOX1 during stress response," BMC Mol. Bio. 8, 50 (2007). [CrossRef]
  39. R. M. Fulbright and D. Axelrod, "Dynamics of nonspecific adsorption of insulin to erythrocyte membranes," J. Fluor. 3, 1-16 (1993). [CrossRef]
  40. S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, "Enhanced the resolution of surface plasmon resonance biosensors by controlling size and distribution of nanoparticles," Opt. Lett. 29, 1390-1392 (2004). [CrossRef] [PubMed]
  41. B. R. Masters, P. T. C. So, C. Buehler, N. Barry, J. D. Sutin, W. W. Mantulin, and E. Gratton, "Mitigating thermal mechanical damage potential during two-photon dermal imaging," J. Biomed. Opt. 9, 1265-1270 (2004). [CrossRef] [PubMed]
  42. X.  Huang, P. K.  Jain, I. H.  El-Sayed, and M. A.  El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers Med. Sci. 23, 217-228 (2008). [CrossRef]
  43. K. G. Sullivan and D. G. Hall, "Enhancement and inhibition of electromagnetic radiation in plane-layered media. II. Enhanced fluorescence in optical waveguide sensors," J. Opt. Soc. Am. B 14, 1160-1166 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited