OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding

Dawn Schafer, Emily A. Gibson, Evan A. Salim, Amy E. Palmer, Ralph Jimenez, and Jeff Squier  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6068-6073 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple fabrication technique to create all silicon/glass microfluidic devices is demonstrated using femtosecond laser ablation and anodic bonding. In a first application, we constructed a cell counting device based on small angle light scattering. The counter featured embedded optical fibers for multiangle excitation and detection of scattered light and/or fluorescence. The performance of the microfluidic cell counter was benchmarked against a commercial fluorescence-activated cell sorter.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(170.1530) Medical optics and biotechnology : Cell analysis
(290.5850) Scattering : Scattering, particles

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 3, 2009
Revised Manuscript: March 18, 2009
Manuscript Accepted: March 18, 2009
Published: March 31, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Dawn N. Schafer, Emily A. Gibson, Evan A. Salim, Amy E. Palmer, Ralph Jimenez, and Jeff Squier, "Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding," Opt. Express 17, 6068-6073 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Altendorf, D. Zebert, M. Holl, and P. Yager, "Differential blood cell counts obtained using a microchannel based flow cytometer," in IEEE International Conference on Solid-State Sensors and Actuators (IEEE, 1997) pp. 531-534. [CrossRef]
  2. M. Brown and C. Wittwer, "Flow cytometry: principles and clinical applications in hematology," Clin. Chem. 46, 1221-1229 (2000). [PubMed]
  3. N. Pamme, R. Koyama, and A. Manz, "Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay," Lab Chip 3, 187-192 (2003). [CrossRef]
  4. H. Chen and Y. Wang, "Optical microflow cytometer for particle counting, sizing and fluorescence detection," Microfluid. Nanofluid. (2008), DOI 10.1007/s10404-008-0335-z.
  5. M. L. Chabinyc, D. T. Chiu, J. Cooper McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, "An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications," Anal. Chem. 73, 4491-4498 (2001). [CrossRef] [PubMed]
  6. A. Llobera, R. Wilke, and S. Büttgenbach, "Poly(dimethylsiloxane) hollow Abbe Prism with microlenses for detection based on absorption and refractive index shift," Lab Chip 4, 24-27 (2004). [CrossRef] [PubMed]
  7. Q1. Y. Tung, M. Zhang, C. Lin, K. Kurabayashi, and S. J. Skerlos, "PDMS-based opto-fluidic micro flow cytometer with two-color multi-angle fluorescence detection capability using PIN photodiodes," Sens. Actuators B 98, 356-367 (2004). [CrossRef]
  8. J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, "Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica," J. Opt. Soc. Am. B 23, 2317-2322 (2006). [CrossRef]
  9. M. S. Giridhar, K. Seong, A. Schülzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, "Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices," Appl. Opt. 43, 4584-4589 (2004). [CrossRef] [PubMed]
  10. A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," Proc. SPIE 5339, 194-204 (2004). [CrossRef]
  11. Y. Bellouard, A. Said, and P. Bado, "Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica," Opt. Express 13, 6635-6644 (2005). [CrossRef] [PubMed]
  12. K. Ke, E. F. Hasselbrink, Jr., and A. J. Hunt, "Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates," Anal. Chem. 77, 5083-5088 (2005). [CrossRef] [PubMed]
  13. R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation," Appl. Phys. Lett. 90, 231118 (2007). [CrossRef]
  14. Q2. Y. Hanada, K. Sugioka, H. Kawano, I. Ishikawa, A. Miyawaki, and K. Midorikawa, "Nano-aquarium fabrication by femtosecond laser direct writing for microscopic observation of aquatic microorganisms," Rev. Laser Engin. 36, 1222-1225 (2008). [CrossRef]
  15. Q3. M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu and C. P. Grigoropoulos, "Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses," Lab Chip, 2009, DOI: 10.1039/b808366e.
  16. L. Cui, T. Zhang and H. Morgan, "Optical particle detection integrated in a dielectrophoretic lab-on-a-chip," J. Micromech. Microeng. 12, 7-12 (2002). [CrossRef]
  17. J. Krüger, K. Singh, A. O'Neill, C. Jackson, A. Morrison, and P. O'Brien, "Development of a microfluidic device for fluorescence activated cell sorting," J. Micromech. Microeng. 12, 486-494 (2002). [CrossRef]
  18. K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, "Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems," Appl. Opt. 42, 4072-4079 (2003). [CrossRef] [PubMed]
  19. C. Lin and G. Lee, "Micromachined flow cytometers with embedded etched optic fibers for optical detection," J. Micromech. Microeng. 13, 447-453 (2003). [CrossRef]
  20. L. Fu, R. Yang, C. Lin, Y. Pan, and G. Lee, "Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection," Analytica Chimica Acta 507, 163-169 (2004). [CrossRef]
  21. Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, "Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements," Lab Chip 4, 372-377 (2004). [CrossRef] [PubMed]
  22. Q4. R. Mazurczyk, J. Vieillard, A. Bouchard, B. Hannes, and S. Krawczyk, "A novel concept of the integrated fluorescence detection system and its application to a lab-on-a-chip microdevice," Sens. Act. B 118, 11-19 (2006). [CrossRef]
  23. R. W. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, "Microfluidic sorting based on optical waveguide integration and diode laser bar sensing," Lab Chip 6, 422-426 (2006). [CrossRef] [PubMed]
  24. G. D. Wallis and D. I. Pomerantz. "Field assisted glass-metal sealing," J. Appl. Phys. 40, 3946 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited