OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Super-resolution orientation estimation and localization of fluorescent dipoles using 3-D steerable filters

François Aguet, Stefan Geissbühler, Iwan Märki, Theo Lasser, and Michael Unser  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6829-6848 (2009)
http://dx.doi.org/10.1364/OE.17.006829


View Full Text Article

Enhanced HTML    Acrobat PDF (1817 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorophores that are fixed during image acquisition produce a diffraction pattern that is characteristic of the orientation of the fluorophore’s underlying dipole. Fluorescence localization microscopy techniques such as PALM and STORM achieve super-resolution by applying Gaussian-based fitting algorithms to in-focus images of individual fluorophores; when applied to fixed dipoles, this can lead to a bias in the range of 5–20 nm. We introduce a method for the joint estimation of position and orientation of dipoles, based on the representation of a physically realistic image formation model as a 3-D steerable filter. Our approach relies on a single, defocused acquisition. We establish theoretical, localization-based resolution limits on estimation accuracy using Cramér-Rao bounds, and experimentally show that estimation accuracies of at least 5 nm for position and of at least 2 degrees for orientation can be achieved. Patterns generated by applying the image formation model to estimated position/orientation pairs closely match experimental observations.

© 2009 Optical Society of America

OCIS Codes
(070.5010) Fourier optics and signal processing : Pattern recognition
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: February 25, 2009
Revised Manuscript: April 3, 2009
Manuscript Accepted: April 3, 2009
Published: April 9, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
François Aguet, Stefan Geissbühler, Iwan Märki, Theo Lasser, and Michael Unser, "Super-resolution orientation estimation and localization of fluorescent dipoles using 3-D steerable filters," Opt. Express 17, 6829-6848 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-8-6829


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. Hell, "Microscopy and its focal switch," Nat. Methods 6, 24-32 (2009). [CrossRef] [PubMed]
  2. G. H. Patterson and J. Lippincott-Schwartz, "A photoactivatable GFP for selective photolabeling of proteins and cells," Science 297, 1873-1877 (2002). [CrossRef] [PubMed]
  3. M. Bates, T. R. Blosser, and X. Zhuang, "Short-range spectroscopic ruler based on a single-molecule optical switch," Phys. Rev. Lett.  94, 108101 (2005). [CrossRef] [PubMed]
  4. K. A. Lidke, B. Rieger, T. M. Jovin, and R. Heintzmann, "Superresolution by localization of quantum dots using blinking statistics," Opt. Express 13, 7052-7062 (2005). [CrossRef] [PubMed]
  5. R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise nanometer localization analysis for individual fluorescent probes," Biophys. J. 82, 2775-2783 (2002). [CrossRef] [PubMed]
  6. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacio, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006). [CrossRef] [PubMed]
  7. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, "Ultra-high resolution imaging by fluorescence photoactivation localization microscopy," Biophys. J. 91, 4258-4272 (2006). [CrossRef] [PubMed]
  8. M. J. Rust, M. Bates, and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods 3, 793-795 (2006). [CrossRef] [PubMed]
  9. M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative comparison of algorithms for tracking single fluorescent particles," Biophys. J. 81, 2378-2388 (2001). [CrossRef] [PubMed]
  10. A. Yildiz, J. N. Forkey, S. A. McKinney, H. Taekjip, Y. E. Goldman, and P. R. Selvin, "Myosin V walks handover-hand: single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003). [CrossRef] [PubMed]
  11. R. J. Ober, S. Ram, and S. Ward, "Localization accuracy in single-molecule microscopy," Biophys. J. 86, 1185-1200 (2004). [CrossRef] [PubMed]
  12. F. Aguet, D. Van De Ville, and M. Unser, "A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles," Opt. Express 13, 10,503-10,522 (2005). [CrossRef]
  13. A. P. Bartko and R. M. Dickson, "Imaging three-dimensional single molecule orientations," J. Phys. Chem. B 103, 11,237-11,241 (1999).
  14. R. Schuster, M. Barth, A. Gruber, and F. Cichos, "Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots," Chem. Phys. Lett. 413, 280-283 (2005). [CrossRef]
  15. J. Enderlein, E. Toprak, and P. R. Selvin, "Polarization effect on position accuracy of fluorophore localization," Opt. Express 14, 8111-8120 (2006). [CrossRef] [PubMed]
  16. E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, "Defocused orientation and position imaging (DOPI) of myosin V," Proc. Natl. Acad. Sci. USA 103, 6495-6499 (2006). [CrossRef] [PubMed]
  17. M. Bohmer and J. Enderlein, "Orientation imaging of single molecules by wide-field epifluorescence microscopy," J. Opt. Soc. Am. A 20, 554-559 (2003). [CrossRef]
  18. D. P. Patra, I. Gregor, and J. Enderlein, "Image analysis of defocused single-molecule images for threedimensional molecule orientation studies," J. Phys. Chem. A 108, 6836-6841 (2004). [CrossRef]
  19. M. A. Lieb, J. M. Zavislan, and L. Novotny, "Single-molecule orientations determined by emission pattern imaging," J. Opt. Soc. Am. B 21, 1210-1215 (2004). [CrossRef]
  20. Z. Sikorski and L. M. Davis, "Engineering the collected field for single-molecule orientation determination," Opt. Express 16, 3660-3673 (2008). [CrossRef] [PubMed]
  21. M. R. Foreman, C. M. Romero, and P. Torok, "Determination of the three-dimensional orientation of single molecules," Opt. Lett. 33, 1020-1022 (2008). [CrossRef] [PubMed]
  22. B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485 (2000). [CrossRef] [PubMed]
  23. W. T. Freeman and E. H. Adelson, "The design and use of steerable filters," IEEE Trans. Pattern Anal. Mach. Intell. 13, 891-906 (1991). [CrossRef]
  24. E. H. Hellen and D. Axelrod, "Fluorescence emission at dielectric and metal-film interfaces," J. Opt. Soc. Am. B 4, 337-350 (1987). [CrossRef]
  25. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984). [CrossRef]
  26. S. F. Gibson and F. Lanni, "Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy," J. Opt. Soc. Am. A 8, 1601-1613 (1991). [CrossRef]
  27. E. Wolf, "Electromagnetic diffraction in optical systems—I. An integral representation of the image field," Proc. R. Soc. London A 253, 349-357 (1959). [CrossRef]
  28. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959). [CrossRef]
  29. S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index," J. Microsc. 169, 391-405 (1993). [CrossRef]
  30. P. Torok and R. Varga, "Electromagnetic diffraction of light focused through a stratified medium," Appl. Opt. 36, 2305-2312 (1997). [CrossRef] [PubMed]
  31. O. Haeberle, "Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy," Opt. Commun. 216, 55-63 (2003). [CrossRef]
  32. A. Egner and S. W. Hell, "Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch," J. Microsc. 193, 244-249 (1999). [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1959).
  34. M. Jacob and M. Unser, "Design of steerable filters for feature detection using Canny-like criteria," IEEE Trans. Pattern Anal. Mach. Intell. 26, 1007-1019 (2004). [CrossRef]
  35. K. A. Winick, "Cramér-Rao lower bounds on the performance of charge-coupled-device optical position estimators," J. Opt. Soc. Am. A 3, 1809-1815 (1986). [CrossRef]
  36. D. L. Snyder and M. I. Miller, Random point processes in time and space, 2nd ed. (Springer, 1991). [CrossRef]
  37. M. Leutenegger, H. Blom, J. Widengren, C. Eggeling, M. Gosch, R. A. Leitgeb, and T. Lasser, "Dual-color total internal reflection fluorescence cross-correlation spectroscopy," J. Biomed. Opt.  11, 040502 (2006). [CrossRef] [PubMed]
  38. M. S. Robbins and B. J. Hadwen, "The noise performance of electron multiplying charge-coupled devices," IEEE Trans. Electron Devices 50, 1227-1232 (2003). [CrossRef]
  39. J. Hu, L.-s. Li,W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, "Linearly polarized emission from colloidal semiconductor quantum rods," Science 292, 2060-2063 (2001). [CrossRef] [PubMed]
  40. B. Huang, W. Wang, M. Bates, and X. Zhuang, "Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy," Science 319, 810-813 (2008). [CrossRef] [PubMed]
  41. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, "Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure," Proc. Natl. Acad. Sci. USA 106, 3125-3130 (2009). [CrossRef] [PubMed]
  42. T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, "Nanoscale imaging of molecular positions and anisotropies," Nat. Methods 5, 1027-1030 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited