OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Annular pupil filter under shot-noise condition for linear and non linear microscopy

Emiliano Ronzitti, Giuseppe Vicidomini, Valentina Caorsi, and Alberto Diaspro  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6867-6880 (2009)
http://dx.doi.org/10.1364/OE.17.006867


View Full Text Article

Enhanced HTML    Acrobat PDF (2493 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The imaging performances of multiphoton excitation and confocal laser scanning microscopy are herby considered: in typical experimental imaging conditions, a small finite amount of photon reaches the detector giving shot-noise fluctuations which affects the signal acquired. A significant detriment in the high frequencies transmission capability is obtained. In order to partially recover the high frequencies information lost, the insertion of a pupil plane filter in the microscope illumination light pathway on the objective lens is proposed. We demonstrate high-frequency and resolution enhancement in the case of linear and non linear fluorescence microscope approach under shot-noise condition.

© 2009 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: January 21, 2009
Revised Manuscript: March 12, 2009
Manuscript Accepted: March 15, 2009
Published: April 10, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Emiliano Ronzitti, Giuseppe Vicidomini, Valentina Caorsi, and Alberto Diaspro, "Annular pupil filter under shot-noise condition for linear and non linear microscopy," Opt. Express 17, 6867-6880 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-8-6867


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. R. Sheppard and T. Wilson, "Image formation in scanning microscopes with partially coherent source and detector," Optica Acta 25, 315-325 (1978). [CrossRef]
  2. W. Denk, J. H. Strickler, and W. W. Webb, "Two-Photon Laser Scanning Fluorescence Microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  3. Y. Garini, B. J. Vermolen and I. T. Young, "From micro to nano: recent advances in high-resolution microscopy," Curr. Opin. Biotechnol. 16, 3-12 (2005). [CrossRef] [PubMed]
  4. T. Wilson and C. J. R. Sheppard, Theory and practice of scanning optical microscopy (AcademicPress, London,1984).
  5. A. Diaspro, G. Chirico, and M. Collini, "Two photon fluorescence excitation and related techniques in biological microscopy," Q. Rev. Biophys. 38, 97-166 (2005). [CrossRef]
  6. M. Nagorni and S. W. Hell, "Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts," J. Opt. Soc. Am. A 18, 36-48 (2001). [CrossRef]
  7. M. G. L. Gustafsson, "Extended resolution fluorescence microscopy," Curr. Opin. Struct. Biol. 9,627-634 (1999). [CrossRef] [PubMed]
  8. I. J. Cox and C. J. R. Sheppard, "Information capacity and resolution in an optical system," J. Opt. Soc. Am. 3, (1986). [CrossRef]
  9. K. Carlsson, "The influence of specimen refractive index, detector signal integration and non uniform scan spees on the imaging properties in confocal microscopy," J. Microsc. 163, 167-178 (1991). [CrossRef]
  10. D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb, "Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes," Appl. Opt. 34, (1995). [CrossRef] [PubMed]
  11. J. E. N. Jonkman and E. H. K. Steltzer, "Resolution and contrast in confocal Two-Photon Microscopy" in Confocal and Two Photons: Foundations, Applications and Advances, A.Diaspro Ed. (Wiley-Liss, 2002).
  12. J. B. Pawley, "Fundamental limits in confocal microscopy" in Handbook of biological confocal microscopy, J. B. Pawley Ed (Springer, 2006) Chap.2.
  13. G. Toraldo di Francia, "Nuovo pupille superrisolvente," Atti Fond.Giorgio Ronchi 7, 366-372 (1952).
  14. I. J. Cox, C. J. R. Sheppard, and T. Wilson, "Reappraisal of arrays of concentric annuli as superresolving filters," J. Opt. Soc. Am. 72, 1287-1291(1982). [CrossRef]
  15. O. Haeberl and B. Simon, "Improving lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams," Opt. Commun. 259, 400-408 (2006). [CrossRef]
  16. P. P. Mondal and A. Diaspro, "Lateral resolution improvement in two photon excitation microscopy by aperture engineering," Opt. Commun. 281,1855-1859 (2008). [CrossRef]
  17. C. J. R. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322-4327 (2004). [CrossRef] [PubMed]
  18. C. Ibáñez-López, G. Saavedra, G. Boyer, and M. Martinez-Corral, "Quasi-isotropic 3-D resolution in two-photon scanning microscopy," Opt. Express 13, 6168-6174 (2005). [CrossRef] [PubMed]
  19. E. L. O’Neill, "Transfer function for an annular aperture," J. Opt. Soc. Am. 46, 285-288 (1956). [CrossRef]
  20. M. Gu and C. J. R. Sheppard, "Three-dimensional optical transfer function in a fiber-optical confocal fluorescence microscope using annular lenses," J. Opt. Soc. Am. A 9, 1993-1999 (1992). [CrossRef]
  21. B. J. D. William C. Karl, A. K. Swan, M. S. Unlu, and B. B. Goldberg, "Capabilities and limitations of pupil-plane filters for superresolution and image enhancement," Opt. Express 12, 4150-4156 (2004). [CrossRef]
  22. M. R. Arnison and C. J. R. Sheppard, "A 3d vectorial optical transfer function suitable for arbitrary pupil functions," Opt. Comm. 211, 53-63 (2002). [CrossRef]
  23. C. W. McCutchen, "Generalized Aperture and the Three-Dimensional Diffraction Image," J. Opt. Soc. Am. 54, 240-242 (1964). [CrossRef]
  24. M. Gu and C. J. R. Sheppard, "Effects of a finite-sized pinhole on 3D image formation in confocal two-photon fluorescence microscopy," J. Mod. Opt. 40, 2009-2024 (1993). [CrossRef]
  25. E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field" Proc. R. Soc. London Ser. A 253, 349-357 (1959). [CrossRef]
  26. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959). [CrossRef]
  27. F. Cella, E. Ronzitti, G. Vicidomini, P. P. Mondal, and A. Diaspro "Studying the illumination puzzle towards an isotropic increase of optical resolution," Proc. of SPIE 6861 (2008). [CrossRef]
  28. I. T. Young, "Quantitative Microscopy," IEEE Eng. Med. Biol. 15, 59-66 (1996). [CrossRef]
  29. E. H. K. Steltzer, "Contrast, resolution, pixilation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy," J. Microsc. 189, 15-24 (1998). [CrossRef]
  30. A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, "Photobleaching," in Handbook of biological confocal microscopy, J. B. Pawley Ed (Springer, 2006) Chap.16. [CrossRef]
  31. P. J. Shaw, "Comparison of Widefield/Deconvolution and confocal microscopy for three-dimensional Imaging," in Handbook of biological confocal microscopy, J. B. Pawley Ed (Springer, 2006) Chap.23. [CrossRef]
  32. E. H. K. Steltzer, "The intermediate optical system of laser-scanning confocal microscopes", in Handbook of biological confocal microscopy," J. B. Pawley Ed (Springer, 2006), Chap. 9.
  33. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ Fluorescence Imaging with Pico- and Femtosecond Two-Photon Excitation: Signal and Photodamage," Biophys. J. 77, 2226-2236 (1999). [CrossRef] [PubMed]
  34. G. H. Patterson and D. W. Piston, "Photobleaching in Two-Photon Excitation Microscopy," Biophys J. 78, 2159-2162 (2000). [CrossRef] [PubMed]
  35. P. J. Verveer and T. M. Jovin, "Efficient superresolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy," J. Opt. Soc. Am. A 14, 1696-1707 (1997). [CrossRef]
  36. K. Lange and R. Carson, "EM Reconstruction Algorithms for emission and transmission tomography," J. Comput. Assist. Tomogr. 8, 306-316 (1984). [PubMed]
  37. P. P. Mondal, G. Vicidomini, and A. Diaspro, "Image reconstruction for multiphoton fluorescence microscopy," Appl. Phys. Lett. 92, 103902 (2008). [CrossRef]
  38. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
  39. M. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, "Pupil-plane filters for confocal microscope point spread function engineering," Opt. Lett. 25, 245-247 (2000). [CrossRef]
  40. C. J. R. Sheppard, X. Gan, M. Gu, and M. Roy, "Signal-to-Noise Ratio in Confocal Microscopes" in Handbook of biological confocal microscopy, J. B. Pawley Ed (Springer, 2006) Chap.22. [CrossRef]
  41. V. Caorsi, E. Ronzitti, G. Vicidomini, S. Krol, G. McConnell, and A. Diaspro "FRET Measurements on Fuzzy Fluorescent Nanostructures," Microsc. Res. Tech. 70, 452-458 (2007). [CrossRef] [PubMed]
  42. G. Patterson, R. N. Day, and D. Piston, "Fluorescent protein spectra," J.Cell Science 114, 837-838 (2001). [PubMed]
  43. A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.-C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, "Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters," Biophys. J. 93, 3285-3290 (2007). [CrossRef] [PubMed]
  44. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, "Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy," Biophys. J. 91, 4258-4272 (2006). [CrossRef] [PubMed]
  45. M. J. Rust, M. Bates, and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods 3, 793-796 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited