OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Compressing surface plasmons for nano-scale optical focusing

Hyeunseok Choi, David F. P. Pile, Sunghyun Nam, Guy Bartal, and Xiang Zhang  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7519-7524 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A major challenge in optics is how to deliver and concentrate light from the micron-scale into the nano-scale. Light can not be guided, by conventional mechanisms, with optical beam sizes significantly smaller than its wavelength due to the diffraction limit. On the other hand, focusing of light into very small volumes beyond the diffraction limit can be achieved by exploiting the wavelength scalability of surface plasmon polaritons. By slowing down an optical wave and shrinking its wavelength during its propagation, optical energy can be compressed and concentrated down to nanometer scale, namely, nanofocusing. Here, we experimentally demonstrate and quantitatively measure the nanofocusing of surface plasmon polaritons in tapered metallic V-grooves down to the deep sub-wavelength scale - ~λ/40 at wavelength of 1.5 micron - with almost 50% power efficiency.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: February 19, 2009
Revised Manuscript: March 19, 2009
Manuscript Accepted: March 20, 2009
Published: April 22, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Hyeunseok Choi, David F. Pile, Sunghyun Nam, Guy Bartal, and Xiang Zhang, "Compressing surface plasmons for nano-scale optical focusing," Opt. Express 17, 7519-7524 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  3. D. K. Gramotnev, "Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach," J. Appl. Phys. 98, 104302 (2005). [CrossRef]
  4. D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006). [CrossRef]
  5. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, "Local electric field enhancement during nano-focusing of plasmon by a tapered gap," Phys. Rev. B 75, 035431 (2007). [CrossRef]
  6. J. Takahara and F. Kusunoki, "Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits," IEICE Trans. Electron.E 90-C, 87-94 (2007). [CrossRef]
  7. P. Ginzburg, D. Arbel, and M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288-3290 (2006). [CrossRef] [PubMed]
  8. K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, "Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by qausi-separation of variables" J. Physics.A: Math. Theor. 41195401 (2008).
  9. K. V. Nerkararyan, "Superfocusing on a surface polariton in a wedge-like structure," Phys. Lett. A 237, 103-105 (1997). [CrossRef]
  10. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Mart?n-Moreno, and F. J. Garc?a-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008). [CrossRef] [PubMed]
  11. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, "Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate," J. Appl. Phys. 101, 104312 (2007). [CrossRef]
  12. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, "Superfocusing of surface polaritons in the conical structure," J. Appl. Phys. 87, 3785-3788 (2000). [CrossRef]
  13. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  14. N. A. Issa, and R. Guckenberger, "Optical nanofocusing on tapered metallic waveguides," Plasmonics 2, 31-37 (2007). [CrossRef]
  15. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Comm. 253, 118-124 (2005). [CrossRef]
  16. W. Ding, S. R. Andrews, and S. A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007). [CrossRef]
  17. E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally taperd plasmonic waveguides," Opt. Express 16, 45-57 (2008). [CrossRef] [PubMed]
  18. V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009). [CrossRef] [PubMed]
  19. T. Yatsui, W. Nomura, and M. Ohtsu, "Metallized slit-shaped pyramidal Si probe with extremely high resolution for 1.5-Tbit/in2 density near-field optical storage", J. Nanophoton. 1, 011550 (2007). [CrossRef]
  20. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 726-729 (2005). [CrossRef]
  21. Z. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006). [CrossRef]
  22. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006). [CrossRef] [PubMed]
  23. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol. 3, 733-737 (2008). [CrossRef] [PubMed]
  24. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007). [CrossRef] [PubMed]
  25. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-dimensional imaging by far-field superlens at visible wavelengths," Nano Lett. 7, 3360-3365 (2007). [CrossRef] [PubMed]
  26. K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006). [CrossRef]
  27. Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett. 99, 153901 (2007). [CrossRef] [PubMed]
  28. R. Oulton, V. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008). [CrossRef]
  29. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray optics at a deep-subwavelength scale: a transformation optics approach," Nano Lett. 8, 4243-4247 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited