OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 2 — Jan. 21, 2010

3D level set reconstruction of model and experimental data in Diffuse Optical Tomography

M. Schweiger, O. Dorn, A. Zacharopoulos, I. Nissilä, and S. R. Arridge  »View Author Affiliations


Optics Express, Vol. 18, Issue 1, pp. 150-164 (2010)
http://dx.doi.org/10.1364/OE.18.000150


View Full Text Article

Enhanced HTML    Acrobat PDF (1554 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The level set technique is an implicit shape-based image reconstruction method that allows the recovery of the location, size and shape of objects of distinct contrast with well-defined boundaries embedded in a medium of homogeneous or moderately varying background parameters. In the case of diffuse optical tomography, level sets can be employed to simultaneously recover inclusions that differ in their absorption or scattering parameters from the background medium. This paper applies the level set method to the three-dimensional reconstruction of objects from simulated model data and from experimental frequency-domain data of light transmission obtained from a cylindrical phantom with tissue-like parameters. The shape and contrast of two inclusions, differing in absorption and diffusion parameters from the background, respectively, are reconstructed simultaneously. We compare the performance of level set reconstruction with results from an image-based method using a Gauss-Newton iterative approach, and show that the level set technique can improve the detection and localisation of small, high-contrast targets.

© 2010 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques

ToC Category:
Image Processing

History
Original Manuscript: October 20, 2009
Revised Manuscript: December 10, 2009
Manuscript Accepted: December 11, 2009
Published: December 22, 2009

Virtual Issues
Vol. 5, Iss. 2 Virtual Journal for Biomedical Optics

Citation
M. Schweiger, O. Dorn, A. Zacharopoulos, I. Nissila, and S. R. Arridge, "3D level set reconstruction of model and experimental data in Diffuse Optical Tomography," Opt. Express 18, 150-164 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-1-150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Cope and D. T. Delpy, "System for long term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination," Med. Biol. Eng. Comput. 26, 289-294 (1988). [CrossRef] [PubMed]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. Magazine 18, 57-75 (2001). [CrossRef]
  3. B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, "Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms," J. Biomed. Opt. 5, 185-193 (2000). [CrossRef] [PubMed]
  4. A. Zacharopoulos, M. Schweiger, V. Kolehmainen, and S. R. Arridge, "3D shape based reconstruction of experimental data in diffuse optical tomography," Opt. Express 17, 18940-18956 (2009). [CrossRef]
  5. M. E. Kilmer, E. L. Miller, A. Barbaro, and D. Boas, "Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography," Appl. Opt. 42, 3129-3144 (2003). [CrossRef] [PubMed]
  6. O. Dorn, E. L. Miller, and C. Rappaport, "A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets," Inverse Probl. 16, 1119-1156 (2000). [CrossRef]
  7. E. T. Chung, T. F. Chan, and X.-C. Tai, "Electrical impedance tomography using level set representation and total variational regularization," J. Comp. Phys. 205, 357-372 (2005). [CrossRef]
  8. G. Bal and K. Ren, "Reconstruction of singular surfaces by shape sensitivity analysis and level set method," Math. Mod. Methods Appl. Sci. 16, 1347-1373 (2006). [CrossRef]
  9. N. Irishina, M. Moscoso, and O. Dorn, "Microwave imaging for early breast cancer detection using a shape-based strategy," IEEE Trans. Biomed. Eng. 56, 1143-1153 (2009). [CrossRef] [PubMed]
  10. M. Jacob, Y. Bresler, V. Toronov, X. Zhang, and A. Webb, "Level-set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging," J. Biomed. Opt. 11,064029-1 - 064029-12 (2006). [CrossRef]
  11. X.-C. Tai and T. F. Chan, "A survey on multiple level set methods with applications for identifying piecewise constant functions," Int. J. Numer. Anal. Mod. 1, 25-47 (2004).
  12. O. Dorn and D. Lesselier, "Level set methods for inverse scattering," Inverse Probl. 22, R67-R131 (2006). [CrossRef]
  13. M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, "Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique," Opt. Lett. 31, 471-473 (2006). [CrossRef] [PubMed]
  14. M. Schweiger, O. Dorn, and S. R. Arridge, "3-D shape and contrast reconstruction in optical tomography with level sets," in "First International Congress of the International Association of Inverse Problems (IPIA)," J. Phys.: Conf. Ser.124, 012043. Institute of Physics, 2007. [CrossRef]
  15. O. Dorn, "A transport-backtransport method for optical tomography," Inverse Probl. 14, 1107-1130 (1998). [CrossRef]
  16. A. D. Klose and A. H. Hielscher, "Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer," Med. Phys. 26, 1698-1707 (1999). [CrossRef] [PubMed]
  17. K. Ren, G. S. Abdoulaev, G. Bal, and A. Hielscher, "Algorithm for solving the equation of radiative transfer in the frequency domain," Opt. Lett. 29, 578-580 (2004). [CrossRef] [PubMed]
  18. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, "Hybrid radiative-transfer-diffusion model for optical tomography," Appl. Opt. 44, 876-886 (2005). [CrossRef] [PubMed]
  19. K. D. Paulsen and H. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995). [CrossRef] [PubMed]
  20. J. C. Schotland, "Continuous-wave diffusion imaging," J. Opt. Soc. Am. A 14, 275-279 (1997). [CrossRef]
  21. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  22. M. Schweiger, S. R. Arridge, and I. Nissila, "Gauss-Newton method for image reconstruction in diffuse optical tomography," Phys. Med. Biol. 50, 2365-2386 (2005). [CrossRef] [PubMed]
  23. M. Schweiger and S. R. Arridge, "Image reconstruction in optical tomography using local basis functions," J. Electron. Imaging 12, 583-593 (2003). [CrossRef]
  24. S. R. Arridge and M. Schweiger, "A gradient-based optimisation scheme for optical tomography," Opt. Express 2, 213-226 (1998). [CrossRef] [PubMed]
  25. R. Roy and E. M. Sevick-Muraca, "Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation," Opt. Express 4, 353-371 (1999). [CrossRef] [PubMed]
  26. A. D. Klose and A. H. Hielscher, "Quasi-Newton methods in optical tomographic image reconstruction," Inverse Probl. 19, 387-409 (2003). [CrossRef]
  27. J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering (Springer, 2006), 2nd ed.
  28. S. Osher and R. Fedkiw, Level Sets and Dynamic Implicit Surfaces (Springer, New York, 2003).
  29. F. Santosa, "A level-set approach for inverse problems involving obstacles," in "ESAIM: Control, Optimization and Calculus of Variations," Vol. 1, pp. 17-22. (1996)
  30. J. A. Sethian, Level Set Methods and Fast Marching Methods (Cambridge University Press, 1999).
  31. S. R. Arridge, "Photon measurement density functions. Part 1: Analytical forms," Appl. Opt. 34, 7395-7409 (1995). [CrossRef] [PubMed]
  32. P. Gonzalez-Rodriguez, M. Kindelan, M. Moscoso, and O. Dorn, "History matching problem in reservoir engineering using the propagation back-projection method," Inverse Probl. 21, 565-590 (2005). [CrossRef]
  33. M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993). [CrossRef]
  34. I. Nissila, K. Kotilahti, K. Fallstrom, and T. Katila, "Instrumentation for the accurate measurement of phase and amplitude in optical tomography," Rev. Sci. Instrum. 73, 3306-3312 (2002). [CrossRef]
  35. I. Nissila, T. Noponen, K. Kotilahti, T. Tarvainen, M. Schweiger, L. Lipiainen, S. R. Arridge, and T. Katila, "Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography," Rev. Sci. Instrum. 76 (2005). Art. no. 044302. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (265 KB)      QuickTime
» Media 2: AVI (320 KB)      QuickTime
» Media 3: AVI (213 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited