OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 2 — Jan. 21, 2010

Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications

George T. Kanellos, George Papaioannou, Dimitris Tsiokos, Christos Mitrogiannis, George Nianios, and Nikos Pleros  »View Author Affiliations

Optics Express, Vol. 18, Issue 1, pp. 179-186 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (654 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the development of a flexible 2D optical fiber-based pressure sensing surface suitable for biomedical applications. The sensor comprises of highly-sensitive Fiber Bragg Grating elements embedded in a thin polymer sheet to form a 2x2 cm2 sensing pad with a minimal thickness of 2.5mm, while it is easily expandable in order to be used as a building block for larger surface sensors. The fabricated pad sensor was combined with a low physical dimension commercially available interrogation unit to enhance the portability features of the complete sensing system. Sensor mechanical properties allow for matching human skin behavior, while its operational performance exhibited a maximum fractional pressure sensitivity of 12 MPa−1 with a spatial resolution of 1×1cm2 and demonstrated no hysteresis and real time operation. These attractive operational and mechanical properties meet the requirements of various biomedical applications with respect to human skin pressure measurements, including amputee sockets, shoe sensors, wearable sensors, wheelchair seating-system sensors, hospital-bed monitoring sensors.

© 2009 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(230.0230) Optical devices : Optical devices

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 22, 2009
Revised Manuscript: November 28, 2009
Manuscript Accepted: December 9, 2009
Published: December 22, 2009

Virtual Issues
Vol. 5, Iss. 2 Virtual Journal for Biomedical Optics

George T. Kanellos, George Papaioannou, Dimitris Tsiokos, Christos Mitrogiannis, George Nianios, and Nikos Pleros, "Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications," Opt. Express 18, 179-186 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Bansal, R. Scott, D. Stewart, and C. J. Cockerell, “Decubitus ulcers: a review of the literature,” Int. J. Dermatol. 44(10), 805–810 (2005). [CrossRef] [PubMed]
  2. A. A. Polliack, R. C. Sieh, D. D. Craig, S. Landsberger, D. R. McNeil, and E. Ayyappa, “Scientific validation of two commercial pressure sensor systems for prosthetic socket fit,” Prosthet. Orthot. Int. 24(1), 63–73 (2000). [CrossRef] [PubMed]
  3. C. Pramanik, H. Saha, and U. Gangopadhyay, “Design optimization of a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications,” J. Micromech. Microeng. 16(10), 2060–2066 (2006). [CrossRef]
  4. A. Othonos, and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Boston, MA: Artech,1999, ISBN 0–89006–344–3.
  5. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” in Proc. SPIE, Fiber Optics and Laser Sensors VII, vol. 1169, 1989.
  6. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]
  7. H. J. Sheng, M.-Y. Fu, T.-C. Chen, W.-F. Liu, and S.-S. Bor, “A lateral pressure sensor using a fiber Bragg grating,” IEEE Photon. Technol. Lett. 16(4), 1146–1148 (2004). [CrossRef]
  8. Y. Zhang, D. Feng, Z. Liu, Z. Guo, X. Dong, K. S. Chiang, and B. C. B. Chu, “High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating,” IEEE Photon. Technol. Lett. 13(6), 618–619 (2001). [CrossRef]
  9. T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal Load Sensing with Fiber Bragg Gratings in Microstructured Optical Fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009). [CrossRef]
  10. M. A. Davis, D. G. Bellemore, M. A. Putnam, and A. D. Kersey, “Interrogation of 60 Fibre Bragg Grating Sensors with Microstrain Resolution Capability,” Electron. Lett. 32(15), 1393–1394 (1996). [CrossRef]
  11. S. C. Tjin, Y. Wang, X. Sun, P. Moyo, and J. M. W. Brownjohn, “Application of quasi-distributed fibre Bragg grating sensors in reinforced concrete structures,” Meas. Sci. Technol. 13(4), 583–589 (2002). [CrossRef]
  12. W. Du, X. M. Tao, H. Y. Tam, and C. L. Choy, “Fundamentals and applications of optical fiber Bragg grating sensors to textile structural composites,” Compos. Struct. 42(3), 217–229 (1998). [CrossRef]
  13. J. W. Arkwright, N. G. Blenman, I. D. Underhill, S. A. Maunder, M. M. Szczesniak, P. G. Dinning, and I. J. Cook, “In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders,” Opt. Express 17(6), 4500–4508 (2009). [CrossRef] [PubMed]
  14. C.-Y. Huang, W.-C. Wang, W.-J. Wu, and W. R. Ledoux, “Composite Optical Bend Loss Sensor for Pressure and Shear Measurement,” IEEE Sens. J. 7(11), 1554–1565 (2007). [CrossRef]
  15. Francis Berghmans, “Photonic skins for optical sensing: highlights of the PHOSPHOS project”, in Optical Fiber Sensor Congference - OFS-20, Technical Digest (CD) (Optical Society of America, 2009), paper OF101 08.
  16. http://www.ibsen.dk/products/im/I-MON-80D-Interrogation-monitor
  17. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited