OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 2 — Jan. 21, 2010

A design for a photonic syringe with multimode coupled slot waveguides

Zeno Gaburro  »View Author Affiliations

Optics Express, Vol. 18, Issue 1, pp. 288-300 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A design is proposed that allows non-stationary field distribution with Bragg gratings in multiple slot waveguides. Selective coupling between modes is achieved or suppressed, according to controllable selection rules, based on mode symmetry. By applying such rules, backward pulling radiation pressure - i.e. toward the light source - can be obtained inside the slots. A mode-switching filter is also proposed, which allows the switching between forward and backward direction of radiation pressure. This “light-actuated” syringe could have potential applications for bidirectional particle trapping and manipulation, optofluidics, optomechanics and biotechnology.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.0230) Optical devices : Optical devices
(230.1480) Optical devices : Bragg reflectors
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 23, 2009
Revised Manuscript: December 15, 2009
Manuscript Accepted: December 15, 2009
Published: December 23, 2009

Virtual Issues
Vol. 5, Iss. 2 Virtual Journal for Biomedical Optics

Zeno Gaburro, "A design for a photonic syringe
with multimode coupled slot waveguides," Opt. Express 18, 288-300 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997). [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  4. A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009). [CrossRef] [PubMed]
  5. J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141–157 (2009). [CrossRef] [PubMed]
  6. J. Pine and G. Chow, “Moving live dissociated neurons with an optical tweezer,” IEEE Trans. Biomed. Eng. 56(4), 1184–1188 (2009). [CrossRef] [PubMed]
  7. M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi, and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Anal. Bioanal. Chem. 394(1), 277–283 (2009). [CrossRef] [PubMed]
  8. R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Cell separation by the combination of microfluidics and optical trapping force on a microchip,” Integrative Biology 1, 43–52 (2009). [CrossRef] [PubMed]
  9. C. Brunner, A. Niendorf, and J. A. Käs, “Passive and active single-cell biomechanics: a new perspective in cancer diagnosis,” Soft Matter 5(11), 2171–2178 (2009). [CrossRef]
  10. Y. Tsuboi, T. Shoji, M. Nishino, S. Masuda, K. Ishimori, and N. Kitamura, “Optical manipulation of proteins in aqueous solution,” Appl. Surf. Sci. 255(24), 9906–9908 (2009). [CrossRef]
  11. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996). [CrossRef] [PubMed]
  12. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996). [CrossRef] [PubMed]
  13. D. J. Andrews, Structured Light and its Applications, (Elsevier, Amsterdam, 2008).
  14. T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77(20), 3131 (2000). [CrossRef]
  15. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006). [CrossRef] [PubMed]
  16. G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007). [CrossRef] [PubMed]
  17. P. J. Reece, E. M. Wright, and K. Dholakia, “Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter,” Phys. Rev. Lett. 98(20), 203902 (2007). [CrossRef] [PubMed]
  18. M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008). [CrossRef]
  19. D. Neel, S. Getin, P. Ferret, M. Rosina, J. M. Fedeli, and O. G. Helleso, “Optical transport of semiconductor nanowires on silicon nitride waveguides,” Appl. Phys. Lett. 94, 253115 (2009). [CrossRef]
  20. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208(1-3), 117–124 (2002). [CrossRef]
  21. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009). [CrossRef] [PubMed]
  22. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005). [CrossRef] [PubMed]
  23. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  24. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  25. A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008). [CrossRef] [PubMed]
  26. E. Peral and A. Yariv, “Supermodes of grating-coupled multimode waveguides and application to mode conversion between copropagating modes mediated by backward Bragg scattering,” J. Lightwave Technol. 17(5), 942–947 (1999). [CrossRef]
  27. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007). [CrossRef] [PubMed]
  28. L. Vivien, D. Marris-Morini, A. Griol, K. B. Gylfason, D. Hill, J. Lvarez, H. Sohlström, J. Hurtado, D. Bouville, and E. Cassan, “Vertical multiple-slot waveguide ring resonators in silicon nitride,” Opt. Express 16(22), 17237–17242 (2008). [CrossRef] [PubMed]
  29. X. Tu, X. Xu, S. Chen, J. Yu, and Q. Wang, “Simulation Demonstration and Experimental Fabrication of a Multiple-Slot Waveguide,” IEEE Photon. Technol. Lett. 20(5), 333–335 (2008). [CrossRef]
  30. C. Kittel, Introduction to Solid State Physics, 8th edition (Wiley, New York, 2004); N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).
  31. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  32. F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008). [CrossRef]
  33. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009). [CrossRef] [PubMed]
  34. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]
  35. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009). [CrossRef]
  36. C. R. Pollock, Fundamental of optoelectronics (Irwin, 1994); B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  37. E. D. Palik, Handbook of Optical Constants of Solids, Volume 3 (Academic Press, 1997).
  38. P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (2474 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited