OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data

Maria-Rosaria Antonelli, Angelo Pierangelo, Tatiana Novikova, Pierre Validire, Abdelali Benali, Brice Gayet, and Antonello De Martino  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10200-10208 (2010)
http://dx.doi.org/10.1364/OE.18.010200


View Full Text Article

Enhanced HTML    Acrobat PDF (1661 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Colon samples with both healthy and cancerous regions have been imaged in diffuse light and backscattering geometry by using a Mueller imaging polarimeter. The tumoral parts at the early stage of cancer are found to be less depolarizing than the healthy ones. This trend clearly shows that polarimetric imaging may provide useful contrasts for optical biopsy. Moreover, both types of tissues are less depolarizing when the incident polarization is linear rather than circular. However, to really optimize an optical biopsy technique based on polarimetric imaging a realistic model is needed for polarized light scattering by tissues. Our approach to this goal is based on numerical Monte-Carlo simulations of polarized light propagation in biological tissues modeled as suspensions of monodisperse spherical scatterers representing the cell nuclei. The numerical simulations were validated by comparison with measurements on aqueous polystyrene sphere suspensions, which are commonly used as tissue phantoms. Such systems exhibit lower depolarization for incident linear polarization in the Rayleigh scattering regime, i.e. when the sphere diameters are smaller than the wavelength, which is obviously not the case for cell nuclei. In contrast, our results show that this behaviour can also be seen for “large” scatterers provided the optical index contrast between the spheres and the surrounding medium is small enough, as it is likely to be the case in biological tissues.

© 2010 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(260.5430) Physical optics : Polarization
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 8, 2010
Revised Manuscript: April 3, 2010
Manuscript Accepted: April 9, 2010
Published: April 30, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Maria-Rosaria Antonelli, Angelo Pierangelo, Tatiana Novikova, Pierre Validire, Abdelali Benali, Brice Gayet, and Antonello De Martino, "Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data," Opt. Express 18, 10200-10208 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-10-10200


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Zhai, G. W. Kattawar, and P. Yang, “Mueller matrix imaging of targets under an air-sea interface,” Appl. Opt. 48(2), 250–260 (2009). [CrossRef] [PubMed]
  2. P. Yang, H. Wei, G. W. Kattawar, Y. X. Hu, D. M. Winker, C. A. Hostetler, and B. A. Baum, “Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase,” Appl. Opt. 42(21), 4389–4395 (2003). [CrossRef] [PubMed]
  3. S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008).
  4. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998). [CrossRef]
  5. D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005). [CrossRef] [PubMed]
  6. D. Hidović-Rowe, E. Claridge, T. Ismail, and P. Taniere, “Analysis of multispectral images of the colon to reveal histological changes characteristic of cancerJ Graham, et al eds., Medical Image Understanding Analysis MIUA 1,66–70 (2006).
  7. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999). [CrossRef]
  8. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36(1), 125–135 (1997). [CrossRef] [PubMed]
  9. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1(13), 441–453 (1997), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-1-13-441 . [CrossRef] [PubMed]
  10. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999). [CrossRef]
  11. M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000). [CrossRef]
  12. M. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001). [CrossRef]
  13. S. Bartel and A. H. Hielscher, “Monte carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000). [CrossRef]
  14. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002). [CrossRef] [PubMed]
  15. F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42(16), 3290–3296 (2003). [CrossRef] [PubMed]
  16. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4420 . [CrossRef] [PubMed]
  17. X. Guo, M. F. G. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15(3), 1348–1360 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1348 . [CrossRef] [PubMed]
  18. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications, Springer (2006).
  19. M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. European Opt. Soc. - Rapid Publications 2, 07018 (2007). [CrossRef]
  20. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43(14), 2824–2832 (2004). [CrossRef] [PubMed]
  21. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002). [CrossRef] [PubMed]
  22. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-VCH, 2004)
  23. B. Kaplan, G. Ledanois, and B. Drévillon, “Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40(16), 2769–2777 (2001). [CrossRef]
  24. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994). [CrossRef] [PubMed]
  25. J. R. Mourant, T. M. Johnson, and J. P. Freyer, “Characterizing Mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40(28), 5114–5123 (2001). [CrossRef]
  26. H. C. van de Hulst, Light scattering by small particles, (Dover, New York, 1981)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited