OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Real-time fluorescence lifetime imaging system with a 32 × 32 0.13μm CMOS low dark-count single-photon avalanche diode array

Day-Uei Li, Jochen Arlt, Justin Richardson, Richard Walker, Alex Buts, David Stoppa, Edoardo Charbon, and Robert Henderson  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10257-10269 (2010)
http://dx.doi.org/10.1364/OE.18.010257


View Full Text Article

Enhanced HTML    Acrobat PDF (2175 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact real-time fluorescence lifetime imaging microscopy (FLIM) system based on an array of low dark count 0.13μm CMOS single-photon avalanche diodes (SPADs) is demonstrated. Fast background-insensitive fluorescence lifetime determination is achieved by use of a recently proposed algorithm called ‘Integration for Extraction Method’ (IEM) [J. Opt. Soc. Am. A 25, 1190 (2008)]. Here, IEM is modified for a wider resolvability range and implemented on the FPGA of the new SPAD array imager. We experimentally demonstrate that the dynamic range and accuracy of calculated lifetimes of this new camera is suitable for widefield FLIM applications by imaging a variety of test samples, including various standard fluorophores covering a lifetime range from 1.6ns to 16ns, microfluidic mixing of fluorophore solutions, and living fungal spores of Neurospora Crassa. The calculated lifetimes are in a good agreement with literature values. Real-time fluorescence lifetime imaging is also achieved, by performing parallel 32 × 16 lifetime calculations, realizing a compact and low-cost FLIM camera and promising for bigger detector arrays.

© 2010 OSA

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(110.0180) Imaging systems : Microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 12, 2010
Revised Manuscript: March 22, 2010
Manuscript Accepted: March 22, 2010
Published: May 3, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Day-Uei Li, Jochen Arlt, Justin Richardson, Richard Walker, Alex Buts, David Stoppa, Edoardo Charbon, and Robert Henderson, "Real-time fluorescence lifetime imaging system with a 32 × 32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-10-10257


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. Kluwer (Academic/Plenum Publishers, New York, 2006).
  2. P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999). [CrossRef] [PubMed]
  3. M. Gersbach, D. L. Boiko, C. Niclass, C. C. Petersen, and E. Charbon, “Fast-fluorescence dynamics in nonratiometric calcium indicators,” Opt. Lett. 34(3), 362–364 (2009). [CrossRef] [PubMed]
  4. A. Draaijer, R. Sanders, and H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. P. Pawley, Ed., Plenum Press, 491–505 (1995).
  5. M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009). [CrossRef]
  6. R. K. Henderson, J. Richardson, and L. Grant, “Reduction of band-to-band tunneling in deep-submicron CMOS single photon avalanche photodiodes,” presented at the International Image Sensor Workshop (IISW 2009), Bergen, Norway, 26–28 June 2009. http://www.imagesensors.org/Past%20Workshops/2009%20Workshop/2009%20Papers/022_paper_henderson_univ_edinburgh_spad_final.pdf .
  7. J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009). [CrossRef]
  8. B. Rae, C. Griffin, K. Muir, J. Girkin, E. Gu, D. Renshaw, E. Charbon, M. Dawson, and R. Henderson, “A microsystem for time-resolved fluorescence analysis using CMOS single-photon avalanche diodes and micro-LEDs,” in Proceedings of IEEE Conference on Solid State Circuits (IEEE, New York, 2008), pp. 166–167. http://infoscience.epfl.ch/record/125270/files/isscc08_rh_pub.pdf .
  9. J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. Henderson, “A 32x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in Proceedings of IEEE Conference on Custom Integrated Circuits (IEEE, New York, 2009), pp. 77–80. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5280890 .
  10. P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981). [CrossRef]
  11. J. A. Jo, Q. Fang, and L. Marcu, “Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique,” IEEE J. Sel. Top. Quantum Electron. 11(4), 835–845 (2005). [CrossRef]
  12. S. W. Magennis, E. M. Graham, and A. C. Jones, “Quantitative spatial mapping of mixing in microfluidic systems,” Angew. Chem. Int. Ed. 44(40), 6512–6516 (2005). [CrossRef]
  13. A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003). [CrossRef]
  14. D.-U. Li, E. Bonnist, D. Renshaw, and R. Henderson, “On-chip time-correlated fluorescence lifetime extraction algorithms and error analysis,” J. Opt. Soc. Am. A 25(5), 1190–1198 (2008). [CrossRef]
  15. D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009). [CrossRef]
  16. R. M. Ballew and J. N. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989). [CrossRef]
  17. D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004). [CrossRef]
  18. D.-U. Li, B. Rae, E. Bonnist, D. Renshaw, and R. Henderson, “On-chip fluorescence lifetime extraction using synchronous gating scheme-Theoretical error analysis and practical implementation,” in Proceedings of Int. Conf. Bio-inspired Systems and Signal processing, INSTICC, (Academic, Lisbon, Portugal, 2008), pp. 171–176. http://www.biosignals.biostec.org/Abstracts/2008/BIOSIGNALS_2008_Abstracts.htm .
  19. C. Moore, S. P. Chan, J. N. Demas, and B. A. DeGraff, “Comparison of methods for rapid evaluation of lifetimes of exponential decays,” Appl. Spectrosc. 58(5), 603–607 (2004). [CrossRef] [PubMed]
  20. W. Trabesinger, C. G. Hübner, B. Hecht, and T. P. Wild, “Continuous real-time measurement of fluorescence lifetime,” Rev. Sci. Instrum. 73(8), 3122–3124 (2002). [CrossRef]
  21. H. P. Good, A. J. Kallir, and U. P. Wild, “Comparison of fluorescence lifetime fitting techniques,” J. Phys. Chem. 88(22), 5435–5441 (1984). [CrossRef]
  22. P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997). [CrossRef]
  23. J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999). [CrossRef]
  24. J. Philips and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. A 20(2), 368–379 (2003). [CrossRef]
  25. M. J. Booth and T. Wilson, “Low-cost, frequency-domain, fluorescence lifetime confocal microscopy,” J. Microsc. 214(1), 36–42 (2004). [CrossRef] [PubMed]
  26. A. D. Elder, S. M. Matthews, J. Swartling, K. Yunus, J. H. Frank, C. M. Brennan, A. C. Fisher, and C. F. Kaminski, “Application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices,” Opt. Express 14(12), 5456–5467 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-12-5456 . [CrossRef] [PubMed]
  27. R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71(3), 201–213 (2008). [CrossRef]
  28. P. Alfke, Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence Generators, XAPP052, Application Note, Xilinx, Inc., San Jose, CA 95124–3400 (1996).
  29. S. Donati, G. Martini, and M. Norgia, “Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits,” Opt. Express 15(26), 18066–18075 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-26-18066 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1296 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited