OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas

Evren Mutlugun, Olga Samarskaya, Tuncay Ozel, Neslihan Cicek, Nikolai Gaponik, Alexander Eychmüller, and Hilmi Volkan Demir  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10720-10730 (2010)
http://dx.doi.org/10.1364/OE.18.010720


View Full Text Article

Enhanced HTML    Acrobat PDF (1335 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present light harvesting of aqueous colloidal quantum dots to nonradiatively transfer their excitonic excitation energy efficiently to dye molecules in water, without requiring ligand exchange. These as-synthesized CdTe quantum dots that are used as donors to serve as light-harvesting antennas are carefully optimized to match the electronic structure of Rhodamine B molecules used as acceptors for light harvesting in aqueous medium. By varying the acceptor to donor concentration ratio, we measure the light harvesting factor, along with substantial lifetime modifications of these water-soluble quantum dots, from 25.3 ns to 7.2 ns as a result of their energy transfer with efficiency levels up to 86%. Such nonradiative energy transfer mediated light harvesting in aqueous medium holds great promise for future quantum dot multiplexed dye biodetection systems.

© 2010 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(260.2160) Physical optics : Energy transfer
(160.1435) Materials : Biomaterials

ToC Category:
Materials

History
Original Manuscript: February 9, 2010
Revised Manuscript: April 23, 2010
Manuscript Accepted: April 28, 2010
Published: May 7, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Evren Mutlugun, Olga Samarskaya, Tuncay Ozel, Neslihan Cicek, Nikolai Gaponik, Alexander Eychmüller, and Hilmi Volkan Demir, "Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas," Opt. Express 18, 10720-10730 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-10-10720


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Georgi, C. Mottola-Hartshorn, A. N. Warner, B. Fields, and L. B. Chen, “Detection of individual fluorescently labeled reovirions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 87(17), 6579–6583 (1990). [CrossRef] [PubMed]
  2. Y. Li, Y. T. H. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA- based fluorescence nanobarcodes,” Nat. Biotechnol. 23(7), 885–889 (2005). [CrossRef] [PubMed]
  3. K. Bacia, S. A. Kim, and P. Schwille, “Fluorescence cross-correlation spectroscopy in living cells,” Nat. Methods 3(2), 83–89 (2006). [CrossRef] [PubMed]
  4. C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008). [CrossRef] [PubMed]
  5. H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005). [CrossRef]
  6. B. O’Reagen and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991). [CrossRef]
  7. S. L. Li, K. J. Jiang, K. F. Shao, and L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 26(26), 2792–2794 (2006). [CrossRef]
  8. E. Mutlugün, S. Nizamoglu, and H. V. Demir, “Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution,” Appl. Phys. Lett. 95(3), 033106 (2009). [CrossRef]
  9. W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, “Water-soluble quantum dots for biomedical applications,” Biochem. Biophys. Res. Commun. 348(3), 781–786 (2006). [CrossRef] [PubMed]
  10. S. Kim and M. G. Bawendi, “Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots,” J. Am. Chem. Soc. 125(48), 14652–14653 (2003). [CrossRef] [PubMed]
  11. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009). [CrossRef]
  12. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002). [CrossRef]
  13. A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007). [CrossRef]
  14. T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948). [CrossRef]
  15. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004). [CrossRef] [PubMed]
  16. D. M. Willard and A. Van Orden, “Quantum dots: Resonant energy-transfer sensor,” Nat. Mater. 2(9), 575–576 (2003). [CrossRef] [PubMed]
  17. I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006). [CrossRef] [PubMed]
  18. S. Sadhu and A. Patra, “Composition effects on quantum dot-based resonance energy transfer,” Appl. Phys. Lett. 93(18), 183104 (2008). [CrossRef]
  19. P. S. Chowdhury, P. Sen, and A. Patra, “Optical properties of CdS nanoparticles and the energy transfer from CdS nanoparticles to Rhodamine 6G,” Chem. Phys. Lett. 413(4-6), 311–314 (2005). [CrossRef]
  20. T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006). [CrossRef]
  21. E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004). [CrossRef]
  22. X. Y. Wang, Q. Maa, Y. B. Lia, B. Li, X. G. Su, and Q. H. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” Can. J. Anal. Sci. Spectrosc. 50, 141–146 (2005).
  23. J. Li, F. Mei, W. Y. Li, X. W. He, and Y. K. Zhang, “Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II),” Spectrochimica Acta Part A 70(4), 811–817 (2008). [CrossRef]
  24. Q. Chen, Q. Ma, Y. Wan, X. Su, Z. Lin, and Q. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” J. Biolumin. Chemilumin. 20(4-5), 251–255 (2005).
  25. A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” Chem. Phys. Chem 7(1), 47–57 (2006). [CrossRef]
  26. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (New York: Springer,2006).
  27. V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett. 93(12), 123102 (2008). [CrossRef]
  28. S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices,” Phys. Rev. Lett. 102(7), 077402 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited