OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Room temperature photon number resolving detector for infared wavelengths

Enrico Pomarico, Bruno Sanguinetti, Rob Thew, and Hugo Zbinden  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10750-10759 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (889 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present a photon number resolving detector at infrared wavelengths, operating at room temperature and with a large dynamic range. It is based on the up-conversion of a signal at 1559 nm into visible wavelength and on its detection by a thermoelectrically cooled multi-pixel silicon avalanche photodiodode, also known as a Silicon Photon Multiplier. With the appropriate up-conversion this scheme can be implemented for arbitrary wavelengths above the visible spectral window. The preservation of the poissonian statistics when detecting coherent states is studied and the cross-talk effects on the detected signal can be easily estimated in order to calibrate the detector. This system is well suited for measuring very low intensities at infrared wavelengths and for analyzing multiphoton quantum states.

© 2010 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(040.3060) Detectors : Infrared
(190.7220) Nonlinear optics : Upconversion
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: April 29, 2010
Manuscript Accepted: April 30, 2010
Published: May 7, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Enrico Pomarico, Bruno Sanguinetti, Rob Thew, and Hugo Zbinden, "Room temperature photon number resolving detector for infared wavelengths," Opt. Express 18, 10750-10759 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008). [CrossRef] [PubMed]
  2. A. Barth, “Infrared spectroscopy of proteins,” Biotech. Biophys. Acta 1767, 1073–1101 (2007). [CrossRef]
  3. V. Kondepati, H. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390, 125–139 (2008). [CrossRef]
  4. F. Scholder, J. Gautier, M. Wegmuller, and N. Gisin, “Long-distance OTDR using photon counting and large detection gates at telecom wavelength,” Opt. Commun. 213, 57–61 (2002). [CrossRef]
  5. www.quantumcandela.net.
  6. M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett. 104, 063602 (2010). [CrossRef] [PubMed]
  7. P. Sekatski, N. Brunner, C. Branciard, N. Gisin, and C. Simon, “Towards quantum experiments with human eyes as detectors based on cloning via stimulated emission,” Phys. Rev. Lett. 103, 113601 (2009). [CrossRef] [PubMed]
  8. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009). [CrossRef]
  9. J. ?ehá?ek, Z. Hradil, O. Haderka, J. Pe?ina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801 (2003). [CrossRef]
  10. G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005). [CrossRef] [PubMed]
  11. M. Fujiwara, and M. Sasaki, “Photon-number-resolving detection at a telecommunications wavelength with a charge-integration photon detector,” Opt. Lett. 31, 691–693 (2006). [CrossRef] [PubMed]
  12. M. Fujiwara, and M. Sasaki, “Direct measurement of photon number statistics at telecom wavelengths using a charge integration photon detector,” Appl. Opt. 46, 3069–3074 (2007). [CrossRef] [PubMed]
  13. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 061803 (2005). [CrossRef]
  14. D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High speed photon number resolving detector with titanium transition edge sensor,” J. Low Temp. Phys. 151, 100–105 (2008). [CrossRef]
  15. D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Photon number resolving detection with high speed and high quantum efficiency,” Metrologia 46, 288–292 (2009). [CrossRef]
  16. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008). [CrossRef]
  17. X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. H. Herder, F. N. C. Wong, and K. K. Berggren, “Fiber coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009). [CrossRef] [PubMed]
  18. . P. Elmer, “High-Speed, Low light Analog APD Receiver Modules LLAM Series,” datasheet.
  19. B. E. Kardynal, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2, 425–428 (2008). [CrossRef]
  20. G. Wu, Y. Jian, E. Wu, and H. Zeng, “Photon-number-resolving detection based on ingaas/inp avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009). [CrossRef]
  21. R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008). [CrossRef]
  22. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express 15, 14539–14549 (2007). [CrossRef] [PubMed]
  23. M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, “Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature,” Opt. Express 17, 16885–16897 (2009). [CrossRef] [PubMed]
  24. G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single photon counting,” Opt. Lett. 31, 1094–1096 (2006). [CrossRef] [PubMed]
  25. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “1.5-µm single photon counting using polarization-independent up-conversion detector,” Opt. Express 14, 13067–13072 (2006). [CrossRef] [PubMed]
  26. . Hamamatsu, MPPC Multi-Pixel Photon Counter, technical information.
  27. . Hamamatsu, S11028–100(X1) datasheet.
  28. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004). [CrossRef] [PubMed]
  29. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate ingaas/inp single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009). [CrossRef]
  30. R. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006). [CrossRef]
  31. A. Feito, J. S. Lundeen, H. Coldenstrodt-Ronge, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Measuring measurement: theory and practice,” N. J. Phys. 11, 093038 (2009). [CrossRef]
  32. I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical crosstalk in single photon avalanche diode arrays: a new complete model,” Opt. Express 16, 8381–8394 (2008). [CrossRef] [PubMed]
  33. S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and K. Sitarsky, “Probability distribution and noise factor of solid state photomultiplier signals with cross-talk and afterpulsing,” IEEE Nucl. Sc. Symp. Conf. Rec. 25, 111 (2009).
  34. Y. Mizumura, K. Kodani, J. Kushida, and K. Nishijima, “Study of the basic characteristics of PPD (SiPM) for the next generation of IACTs,” 31st ICRC, LODZ (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited