OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

The projection approximation and edge contrast for x-ray propagation-based phase contrast imaging of a cylindrical edge

K. S. Morgan, K. K. W. Siu, and D. M. Paganin  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 9865-9878 (2010)
http://dx.doi.org/10.1364/OE.18.009865


View Full Text Article

Enhanced HTML    Acrobat PDF (4019 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine the projection approximation in the context of propagation-based phase contrast imaging using hard x-rays. Specifically, we consider the case of a cylinder or a rounded edge, as a simple model for the edges of many biological samples. The Argand-plane signature of a propagation-based phase contrast fringe from the edge of a cylinder is studied, and the evolution of this signature with propagation. This, along with experimental images obtained using a synchrotron source, reveals how propagation within the scattering volume is not fully described in the projection approximation's ray-based approach. This means that phase contrast fringes are underestimated by the projection approximation at a short object-to-detector propagation distance, namely a distance comparable to the free-space propagation within the volume. This failure of the projection approximation may become non-negligible in the detailed study of small anatomical features deep within a large body. Nevertheless, the projection approximation matches the exact solution for a larger propagation distance typical of those used in biomedical phase contrast imaging.

© 2010 OSA

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(110.7440) Imaging systems : X-ray imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(260.0260) Physical optics : Physical optics
(340.0340) X-ray optics : X-ray optics
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

History
Original Manuscript: February 19, 2010
Revised Manuscript: April 13, 2010
Manuscript Accepted: April 19, 2010
Published: April 27, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
K. S. Morgan, K. K. W. Siu, and D. M. Paganin, "The projection approximation and edge contrast for x-ray propagation-based phase contrast imaging of a cylindrical edge," Opt. Express 18, 9865-9878 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-10-9865


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. C. Röntgen, “On a new kind of rays,” Nature 53(1369), 274–276 (1896). [CrossRef]
  2. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996). [CrossRef]
  3. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” J. Phys. D Appl. Phys. 29, 133–146 (1995).
  4. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384(6607), 335–338 (1996). [CrossRef]
  5. M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008). [CrossRef] [PubMed]
  6. D. W. Parsons, K. S. Morgan, M. Donnelley, A. Fouras, J. Crosbie, I. Williams, R. C. Boucher, K. Uesugi, N. Yagi, and K. K. W. Siu, “High-resolution visualization of airspace structures in intact mice via synchrotron phase-contrast X-ray imaging (PCXI),” J. Anat. 213(2), 217–227 (2008). [CrossRef]
  7. D. M. Paganin, Coherent X-ray Optics, Oxford University Press, New York, 2006.
  8. D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002). [CrossRef] [PubMed]
  9. N. Yagi, Y. Suzuki, K. Umetani, Y. Kohmura, and K. Yamasaki, “Refraction-enhanced x-ray imaging of mouse lung using synchrotron radiation source,” Med. Phys. 26(10), 2190–2193 (1999). [CrossRef] [PubMed]
  10. P. Cloetens, W. Ludwig, J. Baruchel, J.-P. Guigay, P. Pernot-Rejmánková, M. Salomé-Pateyron, M. Schlenker, J.-Y. Buffière, E. Maire, and G. Peix, “Hard x-ray phase imaging using simple propagation of a coherent synchrotron radiation beam,” J. Phys. D Appl. Phys. 32(10A), 330–336 (1999). [CrossRef]
  11. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. A 52(2), 116–130 (1962). [CrossRef]
  12. D. F. Lynch, M. A. O'Keefe, and A. F. Moodie, “n-beam lattice images. V. “The use of the charge-density approximation in the interpretation of lattice images,” Acta Crystallogr. 31, 300–307 (1974).
  13. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15(4), 857–867 (1998). [CrossRef]
  14. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, 2nd ed. (World Scientific Publishing, New Jersey, 2006).
  15. T. E. Gureyev, C. Raven, A. Snigirev, I. Snigireva, and S. W. Wilkins, “Hard x-ray quantitative non-interferometric phase-contrast microscopy,” J. Phys. D Appl. Phys. 32(5), 563–567 (1999). [CrossRef]
  16. M. J. Kitchen, D. M. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004). [CrossRef] [PubMed]
  17. K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008). [CrossRef] [PubMed]
  18. M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).
  19. G. Margaritondo and G. Tromba, “Coherence-based edge diffraction sharpening of x-ray images: A simple model,” J. Appl. Phys. 85(7), 3406–3408 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited