OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Photoacoustic imaging velocimetry for flow-field measurement

Songbo Ma, Sihua Yang, and Da Xing  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 9991-10000 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1839 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the photoacoustic imaging velocimetry (PAIV) method for flow-field measurement based on a linear transducer array. The PAIV method is realized by using a Q-switched pulsed laser, a linear transducer array, a parallel data-acquisition equipment and dynamic focusing reconstruction. Tracers used to track liquid flow field were real-timely detected, two-dimensional (2-D) flow visualization was successfully reached, and flow parameters were acquired by measuring the movement of the tracer. Experimental results revealed that the PAIV method would be developed into 3-D imaging velocimetry for flow-field measurement, and potentially applied to research the security and targeting efficiency of optical nano-material probes.

© 2010 OSA

OCIS Codes
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 1, 2010
Revised Manuscript: April 12, 2010
Manuscript Accepted: April 13, 2010
Published: April 28, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Songbo Ma, Sihua Yang, and Da Xing, "Photoacoustic imaging velocimetry for flow-field measurement," Opt. Express 18, 9991-10000 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. I. Siphanto, K. K. Thumma, R. G. Kolkman, T. G. van Leeuwen, F. F. de Mul, J. W. van Neck, L. N. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express 13(1), 89–95 (2005). [CrossRef] [PubMed]
  2. Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53(7), 1921–1931 (2008). [CrossRef] [PubMed]
  3. C. K. Liao, S. W. Huang, C. W. Wei, and P. C. Li, “Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system,” J. Biomed. Opt. 12(6), 064006–064009 (2007). [CrossRef]
  4. G. F. Lungu, M. L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).
  5. Z. Yuan, C. Wu, H. Zhao, and H. Jiang, “Imaging of small nanoparticle-containing objects by finite-element-based photoacoustic tomography,” Opt. Lett. 30(22), 3054–3056 (2005). [CrossRef] [PubMed]
  6. Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method,” Opt. Express 15(26), 18076–18081 (2007). [CrossRef] [PubMed]
  7. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003). [CrossRef] [PubMed]
  8. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005). [CrossRef] [PubMed]
  9. R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216(1), 279–283 (2000). [PubMed]
  10. S. Manohar, S. E. Vaartjes, J. C. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007). [CrossRef] [PubMed]
  11. M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35(6), 2218–2223 (2008). [CrossRef] [PubMed]
  12. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009). [CrossRef] [PubMed]
  13. L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12(2), 020504 (2007). [CrossRef] [PubMed]
  14. R. O. Esenaliev, I. V larina, K. V Larin, D. J Deyo, M Motamedi, and D. S Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: A feasibility study,” Appl. Opt. 41, 4722-4731 (2002). [CrossRef] [PubMed]
  15. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006). [CrossRef] [PubMed]
  16. J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50(18), 4409–4428 (2005). [CrossRef] [PubMed]
  17. M. L. Li, J. T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008). [CrossRef]
  18. S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett. 35(1), 1 (2010). [CrossRef] [PubMed]
  19. E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009). [CrossRef] [PubMed]
  20. P. Ephrat, M. Roumeliotis, F. S. Prato, and J. J. L. Carson, “3D photoacoustic imaging of a moving target,” Proc. SPIE 7177, 71770W–1-9 (2009).
  21. P. Ephrat, M. Roumeliotis, F. S. Prato, and J. J. L. Carson, “Four-dimensional photoacoustic imaging of moving targets,” Opt. Express 16(26), 21570–21581 (2008). [CrossRef] [PubMed]
  22. D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007). [CrossRef] [PubMed]
  23. L. M. Nie, D. Xing, and S. H. Yang, “In vivo detection and imaging of low-density foreign body with microwave-induced thermoacoustic tomography,” Med. Phys. 36(8), 3429–3437 (2009). [CrossRef] [PubMed]
  24. C. K. Liao, M. L. Li, and P. C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004). [CrossRef] [PubMed]
  25. W. J. Welch, X. Deng, H. Snellen, and C. S. Wilcox, “Validation of miniature ultrasonic transit-time flow probes for measurement of renal blood flow in rats,” Am. J. Physiol. Renal Physiol. 268, F175–F178 (1995).
  26. X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol. 51(24), 6437–6448 (2006). [CrossRef] [PubMed]
  27. R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, “Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer,” Opt. Express 16(11), 7915–7928 (2008). [CrossRef] [PubMed]
  28. H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res. 58(1), 62–73 (1999). [CrossRef] [PubMed]
  29. D. E. Goertz, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster, “High-frequency 3-D color-flow imaging of the microcirculation,” Ultrasound Med. Biol. 29(1), 39–51 (2003). [CrossRef] [PubMed]
  30. L. Sandrin, S. Manneville, and M. Fink, “Ultrafast two-dimensional ultrasonic speckle velocimetry: A tool in flow imaging,” Appl. Phys. Lett. 78(8), 1155–1157 (2001). [CrossRef]
  31. H. B. Kim, J. Hertzberg, C. Lanning, and R. Shandas, “Noninvasive measurement of steady and pulsating velocity profiles and shear rates in arteries using echo PIV: in vitro validation studies,” Ann. Biomed. Eng. 32(8), 1067–1076 (2004). [CrossRef] [PubMed]
  32. H. Fang and L. V. Wang, “M-mode photoacoustic particle flow imaging,” Opt. Lett. 34(5), 671–673 (2009). [CrossRef] [PubMed]
  33. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008). [CrossRef] [PubMed]
  34. J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited