OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change

Martin Persson, David Engström, Anders Frank, Jan Backsten, Jörgen Bengtsson, and Mattias Goksör  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11250-11263 (2010)
http://dx.doi.org/10.1364/OE.18.011250


View Full Text Article

Enhanced HTML    Acrobat PDF (3352 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for reducing intensity fluctuations that typically occur when a spatial light modulator is updated between consecutive computer generated holograms. The method is applicable to most iterative hologram generating algorithms and minimizes the average phase difference between consecutive holograms. Applications with high stability requirements, such as optical force measurement with holographic optical tweezers, should benefit from this improvement.

© 2010 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(090.2890) Holography : Holographic optical elements
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.6120) Optical devices : Spatial light modulators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: April 5, 2010
Revised Manuscript: May 7, 2010
Manuscript Accepted: May 7, 2010
Published: May 12, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Martin Persson, David Engström, Anders Frank, Jan Backsten, Jörgen Bengtsson, and Mattias Goksör, "Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change," Opt. Express 18, 11250-11263 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-11-11250


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16(25), 20987–21003 (2008). [CrossRef] [PubMed]
  2. C. O. Mejean, A. W. Schaefer, E. A. Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 17(8), 6209–6217 (2009). [CrossRef] [PubMed]
  3. A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophoton. 3(4), 224–233 (2010), doi:. [CrossRef]
  4. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17(25), 22718–22725 (2009). [CrossRef]
  5. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45(5), 888–896 (2006). [CrossRef] [PubMed]
  6. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999). [CrossRef]
  7. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001). [CrossRef]
  8. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  9. L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of piconewton forces using a simple optical force microscope,” Biophys. J. 66, A278 (1994).
  10. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000). [CrossRef]
  11. T. Haist, M. Schonleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140(4-6), 299–308 (1997). [CrossRef]
  12. D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17(12), 9989–10000 (2009). [CrossRef] [PubMed]
  13. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]
  14. M. W. Farn, “New iterative algorithm for the design of phase-only gratings,” in Proc. SPIE(1991), pp. 34–42.
  15. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007). [CrossRef] [PubMed]
  16. E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, “The effect of external forces on discrete motion within holographic optical tweezers,” Opt. Express 15(26), 18268–18274 (2007). [CrossRef] [PubMed]
  17. E. Marom and N. Konforti, “Dynamic optical interconnections,” Opt. Lett. 12(7), 539–541 (1987). [CrossRef] [PubMed]
  18. M. Johansson, S. Hård, B. Robertson, I. Manolis, T. Wilkinson, and W. Crossland, “Adaptive beam steering implemented in a ferroelectric liquid-crystal spatial-light-modulator free-space, fiber-optic switch,” Appl. Opt. 41(23), 4904–4911 (2002). [CrossRef] [PubMed]
  19. E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005). [CrossRef]
  20. R. W. Gerchber and W. O. Saxton, “Practical algorithm for determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).
  21. F. Wyrowski and O. Bryngdahl, “Iterative fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5(7), 1058–1065 (1988). [CrossRef]
  22. D. Engström, G. Milewski, J. Bengtsson, and S. Galt, “Diffraction-based determination of the phase modulation for general spatial light modulators,” Appl. Opt. 45(28), 7195–7204 (2006). [CrossRef] [PubMed]
  23. E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, and M. Lindgren, “Fringing fields in a liquid crystal spatial light modulator for beam steering,” J. Mod. Opt. 51(8), 1233–1247 (2004). [CrossRef]
  24. J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proceedings of the SPIE - The International Society for Optical Engineering 5553, 58–67 (2004).
  25. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43(35), 6400–6406 (2004). [CrossRef] [PubMed]
  26. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46(23), 5667–5679 (2007). [CrossRef] [PubMed]
  27. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007). [CrossRef] [PubMed]
  28. J. E. Curtis, C. H. J. Schmitz, and J. P. Spatz, “Symmetry dependence of holograms for optical trapping,” Opt. Lett. 30(16), 2086–2088 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1545 KB)     
» Media 2: AVI (1498 KB)     
» Media 3: AVI (1487 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited