OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy

Michael Mazilu, Anna Chiara De Luca, Andrew Riches, C. Simon Herrington, and Kishan Dholakia  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11382-11395 (2010)
http://dx.doi.org/10.1364/OE.18.011382


View Full Text Article

Enhanced HTML    Acrobat PDF (2536 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Raman spectroscopy permits probing of the molecular and chemical properties of the analyzed sample. However, its applicability has been seriously limited to specific applications by the presence of a strong fluorescence background. In our recent paper [Anal. Chem. 82, 738 (2010)], we reported a new modulation method for separating Raman scattering from fluorescence. By continuously changing the excitation wavelength, we demonstrated that it is possible to continuously shift the Raman peaks while the fluorescence background remains essentially constant. In this way, our method allows separation of the modulated Raman peaks from the static fluorescence background with important advantages when compared to previous work using only two [Appl. Spectrosc. 46, 707 (1992)] or a few shifted excitation wavelengths [Opt. Express 16, 10975 (2008)]. The purpose of the present work is to demonstrate a significant improvement of the efficacy of the modulated method by using different processing algorithms. The merits of each algorithm (Standard Deviation analysis, Fourier Filtering, Least-Squares fitting and Principal Component Analysis) are discussed and the dependence of the modulated Raman signal on several parameters, such as the amplitude and the modulation rate of the Raman excitation wavelength, is analyzed. The results of both simulation and experimental data demonstrate that Principal Component Analysis is the best processing algorithm. It improves the signal-to-noise ratio in the treated Raman spectra, reducing required acquisition times. Additionally, this approach does not require any synchronization procedure, reduces user intervention and renders it suitable for real-time applications.

© 2010 Optical Society of America

OCIS Codes
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Spectroscopy

History
Original Manuscript: February 22, 2010
Revised Manuscript: April 30, 2010
Manuscript Accepted: May 6, 2010
Published: May 14, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Michael Mazilu, Anna Chiara De Luca, Andrew Riches, C. Simon Herrington, and Kishan Dholakia, "Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy," Opt. Express 18, 11382-11395 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-11-11382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders,” Sensors 8, 7818–7832 (2008). [CrossRef]
  2. P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman microspectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38, 1082–1088 (2007). [CrossRef]
  3. J. Chan, D. Taylor, T. Zwerdling, S. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006). [CrossRef]
  4. T. Bridges, R. Uibel, and J. Harris, “Measuring diffusion of molecules into individual polymer particles by confocal Raman microscopy,” Anal. Chem. 78, 2121–2129 (2006). [CrossRef] [PubMed]
  5. A. C. De Luca, G. Rusciano, G. Pesce, S. Caserta, S. Guido, and A. Sasso, “Diffusion in polymer blends by Raman microscopy,” Macromolecules 41, 5512–5514 (2008). [CrossRef]
  6. H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering,” Appl. Phys. Lett. 89, 153124 (2006). [CrossRef]
  7. M. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 47–99 (2005). [CrossRef]
  8. A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by raman tweezers,” Opt. Express 16, 7943–7957 (2008). [CrossRef] [PubMed]
  9. T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009). [CrossRef] [PubMed]
  10. H. Wikström, C. Kakidas, and L. Taylor, “Determination of hydrate transition temperature using transformation kinetics obtained by Raman spectroscopy,” J. Pharm. Biomed. Anal. 49, 247–252 (2009). [CrossRef]
  11. F. Zhu, N. Isaacs, L. Hecht, and L. Barron, “Raman optical activity: a tool for protein structure analysis,” Structure 13, 1409–1419 (2005). [CrossRef] [PubMed]
  12. P. Caspers, G. Lucassen, and G. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003). [CrossRef] [PubMed]
  13. P. R. Jess, D. D. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” Int. J. Cancer 121, 2723–2728 (2007). [CrossRef] [PubMed]
  14. P. R. Jess, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Optical detection and granding of lung neoplasia by Raman microspectroscopy,” Int. J. Cancer 124, 376–380 (2009). [CrossRef]
  15. A. Shreve, N. Cherepy, and R. Mathies, “Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique,” Appl. Spectrosc. 46, 707–711 (1992). [CrossRef]
  16. S. McCain, R. Willett, and D. Brady, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16, 10975–10991 (2008). [CrossRef] [PubMed]
  17. I. G. Cormack, M. Mazilu, K. Dholakia, and C. S. Herrington, “Fluorescence suppression within Raman spectroscopy using annular beam excitation,” Appl. Phys. Lett. 91, 023903 (2007). [CrossRef]
  18. G. Rusciano, A. C. De Luca, A. Sasso, and G. Pesce, “Phase-sensitive detection in Raman tweezers,” Appl. Phys. Lett. 89, 261116 (2006). [CrossRef]
  19. J. Zhao, H. Lui, D. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61, 1225–1232 (2007). [CrossRef] [PubMed]
  20. B. Beier, and A. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134, 1198–1202 (2009). [CrossRef] [PubMed]
  21. A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010). [CrossRef]
  22. P. Mosier-Boss, S. Lieberman, and R. Newbery, “Fluorescence rejection in Raman spectroscopy by shifted spectra, edge detection, and fft filtering techniques,” Appl. Spectrosc. 49, 630–638 (1995). [CrossRef]
  23. J. Zhao, M. M. Carrabba, and F. S. Allen, “Automated fluorescence rejection using shifted excitation Raman difference spectroscopy,” Appl. Spectrosc. 56, 834–845 (2002). [CrossRef]
  24. F. V. Bright, “Multicomponent suppression of fluorescent interferants using phase-resolved Raman spectroscopy,” Anal. Chem. 60, 1622–1623 (1988). [CrossRef] [PubMed]
  25. T. Bridges, M. Houlne, and J. Harris, “Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping,” Anal. Chem. 76, 576–584 (2004). [CrossRef] [PubMed]
  26. I. T. Jolliffe, “Principal Component Analysis,” 2nd ed. (Springer, New York, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited