OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

A systematic method for designing depth-fused multi-focal plane three-dimensional displays

Sheng Liu and Hong Hua  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11562-11573 (2010)
http://dx.doi.org/10.1364/OE.18.011562


View Full Text Article

Enhanced HTML    Acrobat PDF (1953 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lack of accurate focus cues in conventional stereoscopic displays has potentially significant effects on depth perception accuracy and visual fatigue. Recently several multi-focal plane display prototypes have been demonstrated with the promise of improving the accuracy of focus cue rendering in stereoscopic displays. In this paper, we present a systematic method to address two fundamental issues in designing a multi-focal plane display: (1) the appropriate dioptric spacing between adjacent focal planes; and (2) the depth-weighted fusing function to render a continuous three-dimensional (3-D) volume using a sparse number of focal planes placed in the space. By taking account of both ocular factors of the human visual system (HVS) and display factors of a multi-focal plane system, we determine that an appropriate spacing between two adjacent focal planes should be ~0.6 diopter (D) while a smaller spacing may be necessary for further improving retinal image quality. We further develop a set of nonlinear depth-weighted fusing function with the promise of balancing perceptual continuity of a 3-D scene and retinal image quality. Our method was based on quantitative evaluation of the modulation transfer functions (MTF) of depth-fused images formed on retina.

© 2010 OSA

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(120.2820) Instrumentation, measurement, and metrology : Heads-up displays
(330.7322) Vision, color, and visual optics : Visual optics, accommodation

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: March 2, 2010
Revised Manuscript: May 6, 2010
Manuscript Accepted: May 6, 2010
Published: May 17, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Sheng Liu and Hong Hua, "A systematic method for designing depth-fused multi-focal plane three-dimensional displays," Opt. Express 18, 11562-11573 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-11-11562


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995). [CrossRef] [PubMed]
  2. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008). [CrossRef] [PubMed]
  3. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005). [CrossRef]
  4. M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993). [CrossRef] [PubMed]
  5. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994). [CrossRef] [PubMed]
  6. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002). [CrossRef]
  7. A. Sullivan, “A solid-state multi-planar volumetric display,” SID Symposium Digest of Technical Papers 34, 1531–1533 (2003).
  8. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40–1–40–10 (2007).
  9. J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000). [CrossRef]
  10. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004). [CrossRef]
  11. S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004). [CrossRef] [PubMed]
  12. C. Lee, S. Diverdi, and T. Höllerer, “Depth-fused 3D imagery on an immaterial display,” IEEE Trans. Vis. Comput. Graph. 15(1), 20–33 (2009). [CrossRef]
  13. S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual frequency liquid crystal varifocal lens,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 480–484 (2000). [CrossRef]
  14. B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel dis-plays using single or multiple light sources,” J. Soc. Inf. Disp. 14(2), 135–143 (2006). [CrossRef]
  15. S. Liu and H. Hua, “Time-multiplexed dual-focal plane head-mounted display with a liquid lens,” Opt. Lett. 34(11), 1642–1644 (2009). [CrossRef] [PubMed]
  16. G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-18-15716 . [CrossRef] [PubMed]
  17. W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond., B 112(778), 428–450 (1933). [CrossRef]
  18. G. Riguer, N. Tatarchuk, and J. Isidoro, ShaderX2: Shader Programming Tips and Tricks with DirectX 9, (Wordware, 2003).
  19. J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995). [PubMed]
  20. Y. L. Chen, B. Tan, and J. W. L. Lewis, “Simulation of eccentric photorefraction images,” Opt. Express 11(14), 1628–1642 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-14-1628 . [CrossRef] [PubMed]
  21. H. Hua, C. W. Pansing, and J. P. Rolland, “Modeling of an eye-imaging system for optimizing illumination schemes in an eye-tracked head-mounted display,” Appl. Opt. 46(31), 7757–7770 (2007). [CrossRef] [PubMed]
  22. http://www.opticalres.com .
  23. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE Press, 2004).
  24. R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10(7), 1611–1623 (1993). [CrossRef] [PubMed]
  25. D.A. Atchison, and G. Smith, Optics of the Human Eye (Oxford 2000).
  26. F. W. Campbell, “The depth of field of the human eye,” J. Mod. Opt. 4(4), 157–164 (1957).
  27. D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35(3), 313–323 (1995). [CrossRef] [PubMed]
  28. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004). [CrossRef] [PubMed]
  29. K. N. Ogle and J. T. Schwartz, “Depth of focus of the human eye,” J. Opt. Soc. Am. 49(3), 273–280 (1959). [CrossRef] [PubMed]
  30. P. A. Ward, “The effect of stimulus contrast on the accommodation response,” Opththal. Physiol. Opt. 7(1), 9–15 (1987). [CrossRef]
  31. S. Liu, H. Hua, and D. W. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited