OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system

Kang Zhang and Jin U. Kang  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11772-11784 (2010)
http://dx.doi.org/10.1364/OE.18.011772


View Full Text Article

Enhanced HTML    Acrobat PDF (2580 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We realized graphics processing unit (GPU) based real-time 4D (3D + time) signal processing and visualization on a regular Fourier-domain optical coherence tomography (FD-OCT) system with a nonlinear k-space spectrometer. An ultra-high speed linear spline interpolation (LSI) method for λ-to-k spectral re-sampling is implemented in the GPU architecture, which gives average interpolation speeds of >3,000,000 line/s for 1024-pixel OCT (1024-OCT) and >1,400,000 line/s for 2048-pixel OCT (2048-OCT). The complete FD-OCT signal processing including λ-to-k spectral re-sampling, fast Fourier transform (FFT) and post-FFT processing have all been implemented on a GPU. The maximum complete A-scan processing speeds are investigated to be 680,000 line/s for 1024-OCT and 320,000 line/s for 2048-OCT, which correspond to 1GByte processing bandwidth. In our experiment, a 2048-pixel CMOS camera running up to 70 kHz is used as an acquisition device. Therefore the actual imaging speed is camera- limited to 128,000 line/s for 1024-OCT or 70,000 line/s for 2048-OCT. 3D Data sets are continuously acquired in real time at 1024-OCT mode, immediately processed and visualized as high as 10 volumes/second (12,500 A-scans/volume) by either en face slice extraction or ray-casting based volume rendering from 3D texture mapped in graphics memory. For standard FD-OCT systems, a GPU is the only additional hardware needed to realize this improvement and no optical modification is needed. This technique is highly cost-effective and can be easily integrated into most ultrahigh speed FD-OCT systems to overcome the 3D data processing and visualization bottlenecks.

© 2010 OSA

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(200.4560) Optics in computing : Optical data processing

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 5, 2010
Revised Manuscript: April 29, 2010
Manuscript Accepted: May 18, 2010
Published: May 19, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Kang Zhang and Jin U. Kang, "Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system," Opt. Express 18, 11772-11784 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-11-11772


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-19-15149 . [CrossRef] [PubMed]
  2. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  3. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-6-4842 . [CrossRef] [PubMed]
  4. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-17-14880 . [CrossRef] [PubMed]
  5. M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express 17(13), 10786–10799 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-13-10786 . [CrossRef] [PubMed]
  6. M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express 16(16), 12313–12333 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-16-12313 . [CrossRef] [PubMed]
  7. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-2-736 . [CrossRef] [PubMed]
  8. G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48(32), 6365–6370 (2009). [CrossRef] [PubMed]
  9. J. Probst, P. Koch, and G. Huttmann, “Real-time 3D rendering of optical coherence tomography volumetric data,” Proc. SPIE 7372, 73720Q (2009). [CrossRef]
  10. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008). [CrossRef] [PubMed]
  11. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009). [CrossRef]
  12. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007). [CrossRef] [PubMed]
  13. K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009). [CrossRef] [PubMed]
  14. U. Sharma and U. Jin, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic OCT,” Rev. Sci. Instrum. 78, 113102 (2007). [CrossRef] [PubMed]
  15. K. Zhang, E. Katz, D. H. Kim, J. U. Kang, and I. K. Ilev, “Common-path optical coherence tomography guided fiber probe for spatially precise optical nerve stimulation,” Electron. Lett. 46(2), 118–120 (2010). [CrossRef]
  16. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005). [CrossRef]
  17. NVIDIA, “NVIDIA CUDA Compute Unified Device Architecture Programming Guide Version 2.3.1,” (2009).
  18. NVIDIA, “NVIDIA CUDA CUFFT Library Version 2.3,” (2009).
  19. J. Kruger, and R. Westermann, “Acceleration techniques for GPU-based volume rendering,” in Proceedings of the 14th IEEE Visualization Conference (VIS’03) (IEEE Computer Society, Washington, DC, 2003), pp. 287–292.
  20. A. Kaufman, and K. Mueller, “Overview of Volume Rendering,” in The Visualization Handbook, C. Johnson and C. Hansen, ed. (Academic Press, 2005).
  21. M. Levoy, “Display of surfaces from volume data,” IEEE Comput. Graph. Appl. 8(3), 29–37 (1988). [CrossRef]
  22. D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL Programming Guide, Sixth Edition (Addison-Wesley Professional, 2007), chap. 3.
  23. C. Dorrer, N. Belabas, J. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000). [CrossRef]
  24. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, “High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging,” Opt. Lett. 28(21), 2064–2066 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3663 KB)      QuickTime
» Media 2: AVI (3928 KB)      QuickTime
» Media 3: AVI (3845 KB)      QuickTime
» Media 4: AVI (3480 KB)      QuickTime
» Media 5: AVI (3919 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited