OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Natural quasy-periodic binary structure with focusing property in near field diffraction pattern

Mona Mihailescu  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12526-12536 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1430 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A naturally-inspired phase-only diffractive optical element with a circular symmetry given by a quasi-periodic structure of the phyllotaxis type is presented in this paper. It is generated starting with the characteristic parametric equations which are optimal for the golden angle interval. For some ideal geometrical parameters, the diffracted intensity distribution in near-field has a central closed ring with almost zero intensity inside. Its radius and intensity values depend on the geometry or non-binary phase distribution superposed onto the phyllotaxis geometry. Along propagation axis, the transverse diffraction patterns from the binary-phase diffractive structure exhibit a self-focusing behavior and a rotational motion.

© 2010 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1970) Diffraction and gratings : Diffractive optics

ToC Category:
Diffraction and Gratings

Original Manuscript: March 4, 2010
Revised Manuscript: April 5, 2010
Manuscript Accepted: April 6, 2010
Published: May 27, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Mona Mihailescu, "Natural quasy-periodic binary structure 
with focusing property 
in near field diffraction pattern," Opt. Express 18, 12526-12536 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Caley, M. J. Thomson, J. Liu, A. J. Waddie, and M. R. Taghizadeh, “Diffractive optical elements for high gain lasers with arbitrary output beam profiles,” Opt. Express 15(17), 10699–10704 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-17-10699 . [CrossRef] [PubMed]
  2. G. S. Khan, K. Mantel, I. Harder, N. Lindlein, and J. Schwider, “Design considerations for the absolute testing approach of aspherics using combined diffractive optical elements,” Appl. Opt. 46(28), 7040–7048 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-28-7040 . [CrossRef] [PubMed]
  3. H. Angelskår, I.-R. Johansen, M. Lacolle, H. Sagberg, and A. S. Sudbø, “Spectral uniformity of two- and four-level diffractive optical elements for spectroscopy,” Opt. Express 17(12), 10206–10222 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10206 . [CrossRef] [PubMed]
  4. G. Mínguez-Vega, O. Mendoza-Yero, J. Lancis, R. Gisbert, and P. Andrés, “Diffractive optics for quasi-direct space-to-time pulse shaping,” Opt. Express 16(21), 16993–16998 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16993 . [CrossRef] [PubMed]
  5. A. R. Moradi, E. Ferrari, V. Garbin, E. Di Fabrizio, and D. Cojoc, “Strength control in multiple optical traps generated by means of diffractive optical elements,” J. Opt. Adv. Mat. RC 1(4), 158–161 (2007).
  6. C. Iemmi, J. Campos, J. C. Escalera, O. López-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase by multiplexing programmable diffractive lenses,” Opt. Express 14(22), 10207–10219 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10207 . [CrossRef] [PubMed]
  7. K. Kimura, S. Hasegawa, and Y. Hayasaki, “Diffractive spatiotemporal lens with wavelength dispersion compensation,” Opt. Lett. 35(2), 139–141 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-2-139 . [CrossRef] [PubMed]
  8. O. Mendoza-Yero, G. Mínguez-Vega, M. Fernández-Alonso, J. Lancis, E. Tajahuerce, V. Climent, and J. A. Monsoriu, “Optical filters with fractal transmission spectra based on diffractive optics,” Opt. Lett. 34(5), 560–562 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-5-560 . [CrossRef] [PubMed]
  9. N. Ferralis and R. D. Diehl, “Diffraction from one- and two-dimensional quasicrystalline gratings,” Am. J. Phys. 72(9), 1241–1246 (2004), http://dx.doi.org/10.1119/1.1758221 . [CrossRef]
  10. M. Mihailescu, A. M. Preda, A. Sobetkii, and A. C. Petcu, “Fractal-like diffractive arrangement with multiple focal points”, Opto-Electr, Rev. 17(4), 330–337 (2009). [CrossRef]
  11. N. D. Lai, J. H. Lin, and C. C. Hsu, “Fabrication of highly rotational symmetric quasi-periodic structures by multiexposure of a three-beam interference technique,” Appl. Opt. 46(23), 5645–5648 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-23-5645 . [CrossRef] [PubMed]
  12. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-22-4303 . [CrossRef] [PubMed]
  13. L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 021907 (2003). [CrossRef] [PubMed]
  14. D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3067 . [CrossRef] [PubMed]
  15. J. Rosen and D. Abookasis, “Seeing through biological tissues using the fly eye principle,” Opt. Express 11(26), 3605–3611 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3605 . [CrossRef] [PubMed]
  16. S.-P. Simonaho and R. Silvennoinen, “Sensing of wood density by laser light scattering pattern and diffractive optical element based sensor,” J. Opt. Technol. 73(3), 170–174 (2006), http://www.opticsinfobase.org/JOT/abstract.cfm?URI=JOT-73-3-170 . [CrossRef]
  17. R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt. 48(21), 4177–4190 (2009), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-21-4177 . [CrossRef] [PubMed]
  18. I. R. Hooper, P. Vukusic, and R. J. Wootton, “Detailed optical study of the transparent wing membranes of the dragonfly Aeshna cyanea,” Opt. Express 14(11), 4891–4897 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4891 . [CrossRef] [PubMed]
  19. A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007). [CrossRef]
  20. P. Prusinkiewicz and A. Lindenmayer, “The Alogirthmic Beauty of Plants” (Springer-Verlag, New York, 1990)
  21. R. O. Erickson, “The geometry of phyllotaxis” in The growth and functioning of leaves J. E. Dale and F. L. Milthrope, ed. pages 53–88. (University Press, Cambridge, 1983).
  22. R. V. Jean, “Mathematical modelling in phyllotaxis: The state of the art,” Math. Biosci. 64(1), 1–27 (1983). [CrossRef]
  23. S. S. Liaw, “Phyllotaxis: Its geometry and dynamics,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(4), 4589–4593 (1998). [CrossRef]
  24. L. S. Levitov, “Fibonacci numbers in botany and physics: Phyllotaxis,” J. Exp. Theor. Phys. Lett. 54(9), 546–550 (1991).
  25. S. Douady and Y. Couder, “Phyllotaxis as a physical self-organized growth process,” Phys. Rev. Lett. 68(13), 2098–2101 (1992). [CrossRef] [PubMed]
  26. G. P. Bernasconi and J. Boissonade, “Phyllotactic order induced by symmetry breaking in advanced Turing patterns,” Phys. Lett. 232(3–4), 224–230 (1997). [CrossRef]
  27. C. Nisoli, “Spiraling solitons: A continuum model for dynamical phyllotaxis of physical systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026110 (2009). [CrossRef] [PubMed]
  28. A. Murthy, “Mathematics of nature and nature of mathematics” Chapter I, http://www.scribd.com/doc/21990600/Maths-of-Nature-and-Nature-of-Maths-Chapter-1
  29. M. Mihailescu, A. M. Preda, D. Cojoc, E. Scarlat, and L. Preda, “Diffraction pattern from a phyllotaxis type arrangement,” Opt. Lasers Eng. 46(11), 802–809 (2008). [CrossRef]
  30. H. Vogel, “A better way to construct the sunflower head,” Math. Biosci. 44(3–4), 179–189 (1979). [CrossRef]
  31. J. W. Goodman, Introduction to Fourier optics,( Mc Graw-Hill Book Company, 1968)
  32. B. L. Shoop, T. D. Wagner, J. N. Mait, G. R. Kilby, and E. K. Ressler, “Design and analysis of a diffractive optical filter for use in an optoelectronic error-diffusion neural network,” Appl. Opt. 38(14), 3077–3088 (1999), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-14-3077 . [CrossRef]
  33. J. García, D. Mas, and R. G. Dorsch, “Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm,” Appl. Opt. 35(35), 7013–7018 (1996), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-35-7013 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2217 KB)     
» Media 2: MOV (2069 KB)     
» Media 3: MOV (3504 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited