OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Average enhancement factor of molecules-doped coreshell (Ag@SiO2) on fluorescence

Jiunn-Woei Liaw, Chuan-Li Liu, Wei-Min Tu, Chieh-Sheng Sun, and Mao-Kuen Kuo  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12788-12797 (2010)
http://dx.doi.org/10.1364/OE.18.012788


View Full Text Article

Enhanced HTML    Acrobat PDF (14986 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Average enhancement factor (AEF) of a coreshell (Ag@SiO2) on the fluorescence of molecules doped within the silica shell is proposed and studied to estimate the overall performance of a large number of coreshells. Using Mie theory and dyadic Green’s functions, the enhancement factor (EF) of a coreshell is first calculated for any arbitrarily oriented and located electric dipole embedded in the shell. AEF is then obtained by averaging the individual EF over all possible orientations and positions of the electric dipoles. AEF of a FITC-doped coreshell (radius of Ag core: 25 nm, thickness of shell: 15 nm) irradiated by a laser of 488 nm for FITC’s emission at 518 nm is 2.406. It is much smaller than the maximum EF (30.114) of a coreshell containing a single molecule with a radial orientation at its optimal position. For Alexa 430-doped coreshell excited at 428 nm, AEF is 12.34 at the emission of 538 nm.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2160) Physical optics : Energy transfer
(260.2510) Physical optics : Fluorescence
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 16, 2010
Revised Manuscript: May 20, 2010
Manuscript Accepted: May 21, 2010
Published: May 28, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Jiunn-Woei Liaw, Chuan-Li Liu, Wei-Min Tu, Chieh-Sheng Sun, and Mao-Kuen Kuo, "Average enhancement factor of molecules-doped coreshell (Ag@SiO2) on fluorescence," Opt. Express 18, 12788-12797 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-12-12788


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  2. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  3. O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006). [CrossRef]
  4. K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007). [CrossRef] [PubMed]
  5. K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs,” J. Fluoresc. 17(2), 127–131 (2007). [CrossRef] [PubMed]
  6. D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007). [CrossRef]
  7. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009). [CrossRef] [PubMed]
  8. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007). [CrossRef] [PubMed]
  9. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005). [CrossRef] [PubMed]
  10. W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009). [CrossRef] [PubMed]
  11. C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009). [CrossRef] [PubMed]
  12. T. Härtling, P. Reichenbach, and L. M. Eng, “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle,” Opt. Express 15(20), 12806–12817 (2007). [CrossRef] [PubMed]
  13. M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, “Computational study of fluorescence scattering by silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2259–2267 (2007). [CrossRef] [PubMed]
  14. G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, “Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes,” Opt. Express 16(22), 17654–17666 (2008). [CrossRef] [PubMed]
  15. O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007). [CrossRef]
  16. C.-T. Tai, Dyadic Green's Functions in Electromagnetic Theory (IEEE, 1971).
  17. X.-W. Chen, W. C.-H. Choy, S. He, and P. C. Chui, “Highly efficient fluorescence of a fluorescing nanoparticle with a silver shell,” Opt. Express 15(11), 7083–7094 (2007). [CrossRef] [PubMed]
  18. J.-W. Liaw, J. H. Chen, C. S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecule’s fluorescence,” Opt. Express 17(16), 13532–13540 (2009). [CrossRef] [PubMed]
  19. J.-W. Liaw, J.-H. Chen, and C.-S. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 454–465 (2010). [CrossRef]
  20. Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009). [CrossRef] [PubMed]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  22. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002). [CrossRef] [PubMed]
  23. H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009). [CrossRef]
  24. M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009). [CrossRef] [PubMed]
  25. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited