OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Surface plasmon-enhanced and quenched two-photon excited fluorescence

Chun-Yu Lin, Kuo-Chih Chiu, Chia-Yuan Chang, Shih-Hui Chang, Tzung-Fang Guo, and Shean-Jen Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12807-12817 (2010)
http://dx.doi.org/10.1364/OE.18.012807


View Full Text Article

Enhanced HTML    Acrobat PDF (1911 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study investigated theoretically and experimentally that two-photon excited fluorescence is enhanced and quenched via surface plasmons (SPs) excited by total internal reflection with a silver film. The fluorescence intensity is fundamentally affected by the local electromagnetic field enhancement and the quantum yield change according to the surrounding structure and materials. By utilizing the Fresnel equation and classical dipole radiation modeling, local electric field enhancement, fluorescence quantum yield, and fluorescence emission coupling yield via SPs were theoretically analyzed at different dielectric spacer thicknesses between the fluorescence dye and the metal film. The fluorescence lifetime was also decreased substantially via the quenching effect. A two-photon excited total internal reflection fluorescence (TIRF) microscopy with a time-correlated single photon counting device has been developed to measure the fluorescence lifetimes, photostabilities, and enhancements. The experimental results demonstrate that the fluorescence lifetimes and the trend of the enhancements are consistent with the theoretical analysis. The maximum fluorescence enhancement factor in the surface plasmon-total internal reflection fluorescence (SP-TIRF) configuration can be increased up to 30 fold with a suitable thickness SiO2 spacer. Also, to compromise for the fluorescence enhancement and the fluorophore photostability, we find that the SP-TIRF configuration with a 10 nm SiO2 spacer can provide an enhanced and less photobleached fluorescent signal via the assistance of enhanced local electromagnetic field and quenched fluorescence lifetime, respectively.

© 2010 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 23, 2010
Revised Manuscript: May 27, 2010
Manuscript Accepted: May 27, 2010
Published: May 28, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Chun-Yu Lin, Kuo-Chih Chiu, Chia-Yuan Chang, Shih-Hui Chang, Tzung-Fang Guo, and Shean-Jen Chen, "Surface plasmon-enhanced and quenched two-photon excited fluorescence," Opt. Express 18, 12807-12817 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-12-12807


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rohrbach, “Observing secretory granules with a multiangle evanescent wave microscope,” Biophys. J. 78(5), 2641–2654 (2000). [CrossRef] [PubMed]
  2. F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J. 32(7), 635–643 (2003). [CrossRef] [PubMed]
  3. M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005). [CrossRef]
  4. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005). [CrossRef] [PubMed]
  5. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008). [CrossRef]
  6. K. Tawa and W. Knoll, “Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy,” Nucleic Acids Res. 32(8), 2372–2377 (2004). [CrossRef] [PubMed]
  7. F. Yu, B. Persson, S. Löfås, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76(22), 6765–6770 (2004). [CrossRef] [PubMed]
  8. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334(2), 303–311 (2004). [CrossRef] [PubMed]
  9. O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B Chem. 107(1), 148–153 (2005). [CrossRef]
  10. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).
  11. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007). [CrossRef] [PubMed]
  12. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  13. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4(8), 236–238 (1979). [CrossRef] [PubMed]
  14. J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13(22), 8855–8865 (2005). [CrossRef] [PubMed]
  15. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000). [CrossRef]
  16. C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002). [CrossRef]
  17. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001). [CrossRef] [PubMed]
  18. R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14(20), 9307–9316 (2006). [CrossRef] [PubMed]
  19. R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17(8), 5987–5997 (2009). [CrossRef] [PubMed]
  20. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. I. Plane-wave spectrum approach to modeling classical effects,” J. Opt. Soc. Am. B 14(5), 1149–1159 (1997). [CrossRef]
  21. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. II. Enhanced fluorescence in optical waveguide sensors,” J. Opt. Soc. Am. B 14(5), 1160–1166 (1997). [CrossRef]
  22. H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15(5), 1192–1201 (1998). [CrossRef]
  23. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34(9), 1612–1631 (1998). [CrossRef]
  24. V. V. N. Ravi Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5(7), 1386–1391 (2003). [CrossRef]
  25. M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13(5), 054021 (2008). [CrossRef] [PubMed]
  26. I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005). [CrossRef]
  27. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465(1-3), 92–95 (2008). [CrossRef]
  28. D. G. Zhang, X.-C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49(5), 875–879 (2010). [CrossRef] [PubMed]
  29. D. G. Zhang, X.-C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by Rhodamine B molecules doped in a PMMA stripe,” Opt. Lett. 35(3), 408–410 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited