OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms

Igor Buzalewicz, Katarzyna Wysocka-Król, and Halina Podbielska  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12992-13005 (2010)
http://dx.doi.org/10.1364/OE.18.012992


View Full Text Article

Enhanced HTML    Acrobat PDF (1207 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel method for evaluation of bacterial colonies number (Colony Forming Units - CFU), is described. Proposed algorithm, based on the Mellin transform, allows the CFU evaluation, invariant for the spatial orientation and scale changes. The proposed method involves image recording of bacteria grown in Petri dishes, calculation of the Fourier spectrum followed by coordinates transformation, and determination of the Mellin transform. It was proved that there is a high correlation between CFU and maxima of Mellin spectra. The method was practically implemented for evaluation of antibacterial activity of silver-based nanomaterials and the effect of an additional laser light irradiation.

© 2010 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 2, 2010
Revised Manuscript: May 8, 2010
Manuscript Accepted: May 11, 2010
Published: June 2, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Igor Buzalewicz, Katarzyna Wysocka-Król, and Halina Podbielska, "Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms," Opt. Express 18, 12992-13005 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-12-12992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Putman, R. Burton, and M. H. Nahm, “Simplified method to automatically count bacterial colony forming unit,” J. Immunol. Methods 302(1-2), 99–102 (2005). [CrossRef] [PubMed]
  2. D. Mukherjee, A. Pal, S. Sarma, and D. Majumder, “Bacterial colony counting using distance transform,” Int. J. Biomed. Comput. 38(2), 131–140 (1995). [CrossRef] [PubMed]
  3. M. Masuko, S. Hosoi, and T. Hayakawa, “A novel method for detection and counting of single bacteria in a wide field using an ultra-high-sensitivity TV camera without a microscope,” FEMS Microbiol. Lett. 81(3), 287–290 (1991). [CrossRef]
  4. A. Robinson, N. Sadr-kazemi, G. Dickason, and S. T. L. Harrison, “Morphological characterization of yeast colonies growth on solid media using image processing,” Biotechnol. Tech. 12(10), 763–767 (1998). [CrossRef]
  5. J. Alvarez-Borrego, R. Mouriño-Pérez, G. Cristóbal, and J. Pech-Pacheco, “Invariant optical color correlation for recognition of Vibrio cholerae O1,” in Proceedings of International IEEE Conference on Pattern Recognition, vol. 2, (IEEE, 2000), pp. 2283.
  6. J. Alvarez-Borrego, R. Mouriño-Pérez, G. Cristóbal, and J. Pech-Pacheco, “Invariant recognition of polychromatic image of Vibrio Cholerae O1,” Opt. Eng. 41(4), 827–833 (2002). [CrossRef]
  7. X. Liu, S. Wang, L. Sendi, and M. J. Caulfield, “High-throughput imaging of bacterial colonies grown on filter plates with application to serum bactericidal assays,” J. Immunol. Methods 292(1-2), 187–193 (2004). [CrossRef] [PubMed]
  8. K. H. Kim, J. Yu, and M. H. Nahm, “Efficiency of a pneumococcal opsonophagocytic killing assay improved by multiplexing and by coloring colonies,” Clin. Diagn. Lab. Immunol. 10(4), 616–621 (2003). [PubMed]
  9. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt. 46(17), 3639–3648 (2007). [CrossRef] [PubMed]
  10. E. Bae, A. Aroonnual, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “System automation for a bacterial colony detection and identification instrument via forward scattering,” Meas. Sci. Technol. 20(1), 1–9 (2009). [CrossRef]
  11. P. P. Banada, S. Guo, B. Bayraktar, E. W. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron. 22(8), 1664–1671 (2007). [CrossRef]
  12. M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt. 47(5), 678–686 (2008). [CrossRef] [PubMed]
  13. B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, and J. P. Robinson, “Automated classification and recognition of bacterial particles in flow by multi-angle scatter measurement and a support-vector machine classifier,” Cytometry A 73A(4), 369–379 (2008). [CrossRef]
  14. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time – resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt. 13(1), 1–8 (2008). [CrossRef]
  15. R. N. Bracewell, The Fourier Transform and Its Applications, Third edition, (McGraw-Hill, 2000).
  16. H. Stark, ed., Applications of Optical Fourier Transforms, (Academic Press, 1982).
  17. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, Second edition, (World Scientific, 2006).
  18. J. W. Goodman, Introduction to Fourier Optics, Third edition, (Robert & Company Publishers, 2005).
  19. N. Götz, S. Drüe, and G. Hartmann, “Invariant object recognition with discriminant features based on local fast-Fourier Mellin transform, “in Proceedings of 15th International Conference of Pattern Recognition1, (IEEE, 2000), pp. 948-951.
  20. Q. Yin, L. Shen, J. N. Kim, and Y. J. Jeong, “Scale-invariant pattern recognition using a combined Mellin radial harmonic function and the bidimensional empirical mode decomposition,” Opt. Express 17(19), 16581–16589 (2009). [CrossRef] [PubMed]
  21. F. S. Roux, “Rotation- and scale – invariant feature extraction by diffractive optical inner – product transform,” Appl. Opt. 35(11), 1894–1899 (1996). [CrossRef] [PubMed]
  22. D. Casasent and D. Psaltis, “Position, rotation, and scale invariant optical correlation,” Appl. Opt. 15(7), 1795–1799 (1976). [CrossRef] [PubMed]
  23. D. Casasent, and D. Psaltis, “New optical transforms for pattern recognition,” in Proceedings of the IEEE60(1), 77–84 (1977).
  24. R. J. Sasiela and J. D. Shelton, “Transverse spectral filtering and Mellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism,” J. Opt. Soc. Am. A 10(4), 646–660 (1993). [CrossRef]
  25. B. L. Ellerbroek, “Including outer scale effects in zonal adaptive optics calculations,” Appl. Opt. 36(36), 9456–9467 (1997). [CrossRef]
  26. E. Kolenović, E. Kolenović, T. Kreis, Ch. von Kopylow, and W. Jüptner, “Determination of large-scale out-of-plane displacements in digital Fourier holography,” Appl. Opt. 46(16), 3118–3125 (2007). [CrossRef] [PubMed]
  27. Y. K. Tung, “Mellin transform applied to uncertainty analysis in hydrology/ hydraulics,” J. Hydraul. Eng. 116(5), 659–674 (1990). [CrossRef]
  28. Ch. Zoppou, “Review of urban storm water models,” Environ. Model. Softw. 16(3), 195–231 (2001). [CrossRef]
  29. J. Dongmei, and Z. Rongchun, “Speaker normalization based on the generalized time - frequency representation and Mellin transform”, in Proceedings of 5th International Conference on Signal Processing Proceedings2, (IEEE, 2000), pp. 782–785.
  30. J. Chen, B. Xu, and T. Huang, “A novel robust feature of speech signal based on Mellin transform for speaker – independent speech recognition,” in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 1998), pp. 629–632.
  31. T. Irino and R. D. Patterson, “Segregating information about the size and the shape of the vocal tract using a time domain auditory model: The stabilized wavelet-Mellin transform,” Speech Commun. 36(3), 181–203 (2002). [CrossRef]
  32. A. De Sena, and D. Rocchesso, “A Fast Mellin transform with applications in DAFX,” Proceedings of 7th International Conference on Digital Audio Effects, 65–69 (2004) http://dafx04.na.infn.it/WebProc/Proc/P_065.pdf
  33. Z. Sun, and Ch. Han, “Parameter estimation of non-Rayleigh RCS models for SAR images based on the Mellin transformation,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2009), pp. 1081–1084.
  34. A. Derbel, F. Kalel, A. Ben Hamida, and M. Samet, “Wavelet filtering based on Mellin transform dedicated to Cochlear Prostheses”, in Proceedings of 29th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society3 (IEEE, 2007), pp. 1990–1903.
  35. Z. Tong, Y. Fusheng, and T. Qingyu, “A fast algorithm of continuous wavelet transform based on Mellin transform with biomedical application,” in Proceedings of the 20th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society3 (IEEE, 1998), pp. 1142–1144.
  36. I. Buzalewicz, K. Wysocka, and H. Podbielska, “Exploiting of optical transforms for bacteria evaluation in vitro,” Proc. SPIE 7371, 73711H–73711H–6 (2009).
  37. T. M. Lehmann, C. Gönner, and K. Spitzer, “Survey: interpolation methods in medical image processing,” IEEE Trans. Med. Imaging 18(11), 1049–1075 (1999). [CrossRef]
  38. L. Yaroslavsky, “Boundary effect free and adaptive discrete signal sinc-interpolation algorithms for signal and image resampling,” Appl. Opt. 42(20), 4166–4175 (2003). [CrossRef] [PubMed]
  39. C. Y. Wu, A. R. D. Somervell, T. G. Haskell, and T. H. Barnes, “Optical Mellin transform through Haar wavelet transformation,” Opt. Commun. 227(1-3), 75–82 (2003). [CrossRef]
  40. M. Kawashita, S. Toda, H.-M. Kim, T. Kokubo, and N. Masuda, “Preparation of Antibacterial Silver-Doped Silica Glass Microspheres,” J. Biomed. Mater. Res. 66(2), 266–274 (2003). [CrossRef]
  41. J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho, “Antimicrobial effects of silver nanoparticles,” Nanomedicine 3(1), 95–101 (2007). [PubMed]
  42. K. Wysocka, I. Buzalewicz, A. Wieliczko, K. Kowal, W. Stręk, and H. Podbielska, “Biomaterials with antibacterial activity,” Engin. Biomaterials 81–84, 117–119 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited