OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Reconstruction of fluorescence/bioluminescence sources in biological medium with spatial filter

Shinpei Okawa and Yukio Yamada  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 13151-13172 (2010)
http://dx.doi.org/10.1364/OE.18.013151


View Full Text Article

Enhanced HTML    Acrobat PDF (9789 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new method for reconstruction of emitting source distributions by use of a spatial filte and a successive updating process of the forward model for fluorescence/bioluminescenc diffuse optical tomography. The spatial filte transforms a set of the measurement data to a single source strength at a position of interest, and the forward model is updated by use of the estimated source strengths. This updating process ignores the dispensable source positions from reconstruction according to the reconstructed source distribution, and the spatial resolution of the reconstructed image is improved. The estimated sources are also used for the reduction of artifacts induced by noises based on the singular value decomposition. Some numerical experiments show the advantages of the proposed method by comparing the present results with those obtained by the conventional methods of the least squares method and Algebraic Reconstruction Technique. Finally the criteria for practical use of the method are quantitatively presented by the simulations for 2D and 3D geometries.

© 2010 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Image Processing

History
Original Manuscript: March 25, 2010
Revised Manuscript: May 27, 2010
Manuscript Accepted: May 28, 2010
Published: June 3, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Shinpei Okawa and Yukio Yamada, "Reconstruction of fluorescence/bioluminescence sources in biological medium with spatial filter," Opt. Express 18, 13151-13172 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-12-13151


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, C-H. Yung, C. Bremerand, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8 (7), 757-760 (2002). [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23 (3), 313-320 (2005). [CrossRef] [PubMed]
  3. S. R. Arridge, "Optical tomography in medical imaging," Inverse Prob. 15, R41-R93 (1999). [CrossRef]
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  5. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33(10), 1963-1974 (1994). [CrossRef] [PubMed]
  6. D. Grosenick, H. Wabnitz, H. H. Rinneberg, T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammography and first in vivo applications," Appl. Opt. 38(13), 2927-2943 (1999). [CrossRef]
  7. D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005). [CrossRef] [PubMed]
  8. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005). [CrossRef] [PubMed]
  9. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40(19), 3278-3288 (2001). [CrossRef]
  10. T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005). [CrossRef] [PubMed]
  11. G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas "Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005). [CrossRef] [PubMed]
  12. R. Weissleder, "Molecular Imaging in Cancer," Science 321, 1168-1171 (2006). [CrossRef]
  13. D. J. Hawrysz, and E. M. Sevick-Muraca, "Developments toward Diagnostic Breast Cancer Imaging using Near-Infrared Optical Measurements and Fluorescent Contrast Agents," Neoplasia 2 (5), 388-417 (2000). [CrossRef]
  14. L. Bakker, M. van der Mark, M van Beek, M. van der Voort, G. Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, "Optical Fluorescence Imaging of Breast Cancer," in Proceedings of Biomedical Optics Topical Meeting (OSA, Miami, Florida, 2006) SH56.
  15. K. Vishwanath, B. Pogue, and M-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method," Phys. Med. Biol. 47, 3387-3405 (2002). [CrossRef] [PubMed]
  16. J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Time-resolved imaging of fluorescent objects embedded in turbid media," Opt. Lett. 20(5), 489-491 (1995). [CrossRef] [PubMed]
  17. R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging. 22(7), 824-836 (2003). [CrossRef] [PubMed]
  18. A. B. Milstein, J. J. Scott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffuse tomography using multiple-frequency data," J. Opt. Soc. Am. A 21(6), 1035-1049 (2004). [CrossRef]
  19. D. Y. Paithankar, U. A. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random medium," Appl. Opt. 36(10), 2260-2272 (1997). [CrossRef] [PubMed]
  20. F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, "A self-normalized, full time-resolved method for fluorescence diffuse optical tomography," Opt. Express 16(17), 13104-13121 (2008). [CrossRef] [PubMed]
  21. A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, "Total light approach of time-domain fluorescence diffuse optical tomography," Opt. Express 16(19), 15268-15285 (2008). [CrossRef] [PubMed]
  22. L. Zhang, F. Gao, H. He, and H Zhao, "Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors," Opt. Express 16(10), 7214-7223 (2008). [CrossRef] [PubMed]
  23. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in timedomain fluorescence molecular tomography," Opt. Express,  14(16), 7109-7124 (2006). [CrossRef] [PubMed]
  24. M. J. Eppstein, D. E. Doughety, D. J. Hawrysz, and E. M. Sevick-Muraka, "Three-Dimensional Baysian Optical Image Reconstruction with Domain Decomposition," IEEE Trans. Med. Imaging 20(3), 147-163 (2001). [CrossRef] [PubMed]
  25. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21(2), 158-160 (1996). [CrossRef] [PubMed]
  26. A. Soubret, J. Ripoll, D. Yessayan, and V. Ntziachristos, "Three-dimensional fluorescent tomography in presence of absorption: Study of the normalized Born approximation," in 2004 Biomedical Optics Topical Meeting Technical Digest (OSA, Miami, Florida, 2004) WB6.
  27. A. X. Cong and G. Wang, "A finite-element reconstruction method for 3D fluorescence tomography," Opt. Express 13(24), 9847-9857 (2006). [CrossRef]
  28. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, "In vivo mouse studies with bioluminescence tomography," Opt. Express 14(17), 7801-7809 (2006). [CrossRef] [PubMed]
  29. B. D. van Veen and K. M. Buckly, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Mag. 15, 4-23 (1988). [CrossRef]
  30. S. Baillet, J. C. Mosher and R. M. Leahy, "Electromagnetic brain mapping," IEEE Signal Process Mag. 18, 14-30 (2001). [CrossRef]
  31. B. D. van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linear constrained minimum variance spatial filter," IEEE Trans. Biomed. Eng. 44(9), 867-880 (1997). [CrossRef] [PubMed]
  32. S. Okawa, and S. Honda, "MEG Analysis with Spatial Filtered Reconstruction," IEICE Trans. on Fundam.Electron. Commun. Comput. Sci. 89-A(5), 1428-1436 (2006). [CrossRef]
  33. S. Okawa, and S. Honda, "Dipole estimation with a combination of noise reduction and spatial filter," International Congress Series 1300, 249-252 (2007). [CrossRef]
  34. S. Okawa, and Y. Yamada, "Source estimation with spatial filter for fluorescence diffuse optical tomography," in Biomedical Optics Topical Meeting Technical Digest (OSA, Miami, Florida, 2008) BSuE41.
  35. C. Kuo, O. Coquoz, T. L. Troy, H. Xu and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12, 024007 (2007). [CrossRef] [PubMed]
  36. M. Schweiger, S. R. Arridge, and D. T. Delpy, "Application of the Finite-Element Method for the Forward and Inverse Model in Optical Tomography," J. Math. Imaging Vis. 3, 263-283 (1993). [CrossRef]
  37. C. R. Vogel,Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) (SIAM, Philadelphia, 2002). [CrossRef]
  38. C. C. Paige and M. A. Saunders, "LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares," ACM trans. on Math. Software 8(1), 43-71 (1982). [CrossRef]
  39. C. W. Groetsch, Inverse Problems in the Mathematical Sciences 1. Auflage (Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1993).
  40. C. W. Groetsch, Inverse Problem (the Mathematical Association of America, Washington, 1999).
  41. S. Holder, Electrical Impedance Tomography: Methods, History and Applications (Institute of Physics Publishing, Bristol and Philadelphia, 2005).
  42. S. Okawa and Y. Yamada, "3D Light Source Reconstruction with Spatial Filter for Fluorescence/ Bioluminescence Diffuse Optical Tomography,ffin Diffuse Optical Imaging II, R. Cubeddu and A. H. Hielscher, eds., Proc. SPIE 7369, 736916.
  43. Y. Lv, J. Yian, W. Cong, G. Wang, W. Yang, C. Qin and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited