OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles

Sergiy Korposh, Stephen W. James, Seung-Woo Lee, Stephen Topliss, Sammy C. Cheung, William J. Batty, and Ralph P. Tatam  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 13227-13238 (2010)
http://dx.doi.org/10.1364/OE.18.013227


View Full Text Article

Enhanced HTML    Acrobat PDF (5206 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel approach to chemical application of long period grating (LPG) optical fibers was demonstrated, which were modified with a film nanoassembled by the alternate deposition of SiO2 nanoparticles (SiO2 NPs) and poly(diallyldimethyl ammonium chloride) (PDDA). Nanopores of the sensor film could be used for sensitive adsorption of chemical species in water, which induced the changes in the refractive index (RI) of the light propagating in the cladding mode of the optical fiber, with a concomitant effect on the transmission spectrum in the LPG region. The prepared fiber sensor was highly sensitive to the change in the RI of the surrounding medium and the response time was very fast within 10 s. In addition, chemical infusion into the film was tested using a porphyrin compound, tetrakis-(4-sulfophenyl)porphine (TSPP), which could be saturated within a few min. The lowest detectable concentration of the TSPP analyte was 10 μM. The TSPP infusion led to the development of well-pronounced dual resonance bands, indicating a large increase in the optical thickness of the film. The RI of the film was dramatically increased from 1.200 to ca. 1.540.

© 2010 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Sensors

History
Original Manuscript: March 31, 2010
Revised Manuscript: April 30, 2010
Manuscript Accepted: May 1, 2010
Published: June 4, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Sergiy Korposh, Stephen W. James, Seung-Woo Lee, Stephen Topliss, Sammy C. Cheung, William J. Batty, and Ralph P. Tatam, "Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles," Opt. Express 18, 13227-13238 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-12-13227


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. James and R. P. Tatam, “Fiber Optic Sensors with Nano-Structured Coatings,” J. Opt. A, Pure Appl. Opt. 8(7), S430 (2006). [CrossRef]
  2. Z. Gu and Y. Xu, “Design optimization of a long-period fiber grating with sol–gel coating for a gas sensor,” Meas. Sci. Technol. 18(11), 3530–3536 (2007). [CrossRef]
  3. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005). [CrossRef]
  4. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002). [CrossRef]
  5. I. Del Villar, M. Achaerandio, I. R. Matías, and F. J. Arregui, “Deposition of overlays by electrostatic self-assembly in long-period fiber gratings,” Opt. Lett. 30(7), 720–722 (2005). [CrossRef] [PubMed]
  6. I. Del Villar, I. R. Matías, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006). [CrossRef]
  7. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996). [CrossRef] [PubMed]
  8. S. C. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B 25(6), 897–902 (2008). [CrossRef]
  9. J. M. Corres, I. R. Matías, I. del Villar, and F. J. Arregui, “Design of pH sensors in long-period fiber gratings using polymeric nanocoatings,” IEEE Sens. J. 7(3), 455–463 (2007). [CrossRef]
  10. J. Keith, L. C. Hess, W. U. Spendel, J. A. Cox, and G. E. Pacey, “The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption,” Tatanta 70, 818–822 (2006).
  11. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006). [CrossRef] [PubMed]
  12. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “Coated long-period fiber gratings as high-sensitivity opto-chemical sensors,” J. Lightwave Technol. 24(4), 1776–1786 (2006). [CrossRef]
  13. S. Korposh, S. Kodaira, S.-W. Lee, W.J. Batty, S.W. James, R. P. Tatam, “Deposition of SiO2/polymer nanoporous thin films on long-period grating (LPG) optical fibers and dramatic enhancement of the resonance bands,” Sensing Technology, 2008. ICST 2008, 666–669, (2008) doi: 10.1109/ICSENST.2008.4757189.
  14. D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matías, “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20(3), 034002 (2009). [CrossRef]
  15. X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol. 20(2), 255–266 (2002). [CrossRef]
  16. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971). [CrossRef] [PubMed]
  17. S S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical Fiber Long Period Grating based Selective Vapour Sensing of Volatile Organic Compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010). [CrossRef]
  18. J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir 23(13), 7293–7298 (2007). [CrossRef] [PubMed]
  19. I. Ishaq, A. Quintela, S. James, G. Ashwell, J. Lopezhiguera, and R. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107(2), 738–741 (2005). [CrossRef]
  20. A. Morales-Bahnik, R. Czolk, and H. J. Ache, “An optochemical ammonia sensor based on immobilized metalloporphyrins,” Sens. Actuators B Chem. 19(1-3), 493–496 (1994). [CrossRef]
  21. S. O. Korposh, N. Takahara, J. J. Ramsden, S.-W. Lee, and T. Kunitake, “Nano–assembled thin film gas sensors. I. Ammonia detection by a porphyrin–based multilayer film,” JBPC 6(3), 125–132 (2005). [CrossRef]
  22. S. Korposh, S. Kodaira, W. J. Batty, S. W. James, and S.-W. Lee, “Nano-assembled thin film gas sensor. II. An intrinsic high sensitive fiber optic sensor for ammonia detection,” Sens. Mater. 21, 179–189 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (2576 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited