OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Strategies for three-dimensional particle tracking with holographic video microscopy

Fook Chiong Cheong, Bhaskar Jyoti Krishnatreya, and David G. Grier  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13563-13573 (2010)
http://dx.doi.org/10.1364/OE.18.013563


View Full Text Article

Enhanced HTML    Acrobat PDF (1350 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The video stream captured by an in-line holographic microscope can be analyzed on a frame-by-frame basis to track individual colloidal particles’ three-dimensional motions with nanometer resolution. In this work, we compare the performance of two complementary analysis techniques, one based on fitting to the exact Lorenz-Mie theory and the other based on phenomenological interpretation of the scattered light field reconstructed with Rayleigh-Sommerfeld back-propagation. Although Lorenz-Mie tracking provides more information and is inherently more precise, Rayleigh-Sommerfeld reconstruction is faster and more general. The two techniques agree quantitatively on colloidal spheres’ in-plane positions. Their systematic differences in axial tracking can be explained in terms of the illuminated objects’ light scattering properties.

© 2010 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 5, 2010
Revised Manuscript: June 2, 2010
Manuscript Accepted: June 4, 2010
Published: June 9, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Fook Chiong Cheong, Bhaskar Jyoti Krishnatreya, and David G. Grier, "Strategies for three-dimensional particle tracking with holographic video microscopy," Opt. Express 18, 13563-13573 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-13-13563


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Crocker, and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  2. J. C. Crocker, and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994). [CrossRef] [PubMed]
  3. G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, “Experimental demonstration of violations of the second law of thermodynmaics for small systems and short time scales,” Phys. Rev. Lett. 89, 050601 (2002). [CrossRef] [PubMed]
  4. T. G. Mason, K. Ganesan, J. H. van Zanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997). [CrossRef]
  5. T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu, “Stretching of a single tethered polymer in a uniform flow,” Science 268, 83–87 (1995). [CrossRef] [PubMed]
  6. C. Gosse, and V. Croquette, “Magnetic tweezers: Micromanipulation and force measurement at the molecular level,” Biophys. J. 82, 3314–3329 (2002). [CrossRef] [PubMed]
  7. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006). [CrossRef] [PubMed]
  8. S.-H. Lee, and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007). [CrossRef] [PubMed]
  9. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18,275–18,282 (2007).
  10. F. C. Cheong, B. Sun, R. Dreyfus, A. Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13,071–13,079 (2009). [CrossRef]
  11. F. C. Cheong, K. Xiao, and D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009). [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, New York, 2005).
  13. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef] [PubMed]
  14. F. C. Cheong, and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18, 6555–6562 (2010). [CrossRef] [PubMed]
  15. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  16. J. Garcia-Sucerquia, J. H. Ramírez, and R. Castaneda, “Incoherent recovering of the spatial resolution in digital holography,” Opt. Commun. 260, 62–67 (2006). [CrossRef]
  17. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).
  18. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2001).
  19. W. J. Lentz, “Generating Bessel functions in Mie scattering calculations using continued fractions,” Appl. Opt. 15, 668–671 (1976). [CrossRef] [PubMed]
  20. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]
  21. C. B. Markwardt, “Non-linear least squares fitting in IDL with MPFIT,” in Astronomical Data Analysis Software and Systems XVIII, D. Bohlender, P. Dowler, and D. Durand, eds. (Astronomical Society of the Pacific, San Francisco, 2009).
  22. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and theory,” in Numerical Analysis, G. A. Watson, ed., vol. 630, p. 105 (Springer-Verlag, Berlin, 1977).
  23. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005). [CrossRef] [PubMed]
  24. G. C. Sherman, “Application of the convolution theorem to Rayleigh’s integral formulas,” J. Opt. Soc. Am. 57, 546–547 (1967). [CrossRef] [PubMed]
  25. U. Schnars, and W. P. O. Jüptner, “Digital recording and reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  26. E. R. Dufresne, and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instrum. 69, 1974–1977 (1998). [CrossRef]
  27. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef] [PubMed]
  28. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005). [CrossRef] [PubMed]
  29. P. Messmer, P. J. Mullowney, and B. E. Granger, “GPULib: GPU computing in high-level languages,” Comput. Sci. Eng. 10, 70–73 (2008). [CrossRef]
  30. K. Xiao, and D. G. Grier, “Multidimensional optical fractionation with holographic verification,” Phys. Rev. Lett. 104, 028302 (2010). [CrossRef] [PubMed]
  31. F. C. Cheong, S. Duarte, S.-H. Lee, and D. G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms,” Rheol. Acta 48, 109–115 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (663 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited