OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Plasmonic nanofocusing using a metal-coated axicon prism

Keisuke Kato, Atsushi Ono, Wataru Inami, and Yoshimasa Kawata  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13580-13585 (2010)
http://dx.doi.org/10.1364/OE.18.013580


View Full Text Article

Enhanced HTML    Acrobat PDF (1392 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an excitation method for the localization of photons at the apex of a metal coated axicon prism. The cone angle of the prism and the metallic film thickness are designed to match the excitation conditions for surface plasmons. The plasmons propagate along the sides of the prism and converge at its apex. The resulting nanofocusing was investigated by simulating the intensity distributions around the apex of the prism using a finite-difference time-domain algorithm. For incident radial polarization, a localized and field enhanced spot is generated by the constructive interference of surface plasmons.

© 2010 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 28, 2010
Revised Manuscript: June 3, 2010
Manuscript Accepted: June 4, 2010
Published: June 9, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Keisuke Kato, Atsushi Ono, Wataru Inami, and Yoshimasa Kawata, "Plasmonic nanofocusing using a metal-coated axicon prism," Opt. Express 18, 13580-13585 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-13-13580


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  2. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159–161 (1994). [CrossRef] [PubMed]
  3. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope,” J. Chem. Phys. 117(3), 1296–1301 (2002). [CrossRef]
  4. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004). [CrossRef] [PubMed]
  5. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25(6), 372–374 (2000). [CrossRef]
  6. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  7. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004). [CrossRef]
  8. A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays,” Nano Lett. 7(3), 745–749 (2007). [CrossRef] [PubMed]
  9. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  10. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  11. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007). [CrossRef]
  12. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007). [CrossRef]
  13. N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005). [CrossRef]
  14. A. E. Babayan and Kh. V. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicrosc. 107(12), 1136–1140 (2007). [CrossRef]
  15. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003). [CrossRef] [PubMed]
  16. H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun. 153(4-6), 235–239 (1998). [CrossRef]
  17. K. Watanabe, G. Terakado, and H. Kano, “Localized surface plasmon microscope with an illumination system employing a radially polarized zeroth-order Bessel beam,” Opt. Lett. 34(8), 1180–1182 (2009). [CrossRef] [PubMed]
  18. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  19. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  20. W. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, New York, 1978).
  21. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited