OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation

Jeffrey J. Field, Ramón Carriles, Kraig E. Sheetz, Eric V. Chandler, Erich E. Hoover, Shane E. Tillo, Thom E. Hughes, Anne W. Sylvester, David Kleinfeld, and Jeff A. Squier  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13661-13672 (2010)
http://dx.doi.org/10.1364/OE.18.013661


View Full Text Article

Enhanced HTML    Acrobat PDF (1511 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A challenge for nonlinear imaging in living tissue is to maximize the total fluorescent yield from each fluorophore. We investigated the emission rates of three fluorophores—rhodamine B, a red fluorescent protein, and CdSe quantum dots—while manipulating the phase of the laser excitation pulse at the focus. In all cases a transform-limited pulse maximized the total yield to insure the highest signal-to-noise ratio. Further, we find evidence of fluorescence antibleaching in quantum dot samples.

© 2010 OSA

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(320.5540) Ultrafast optics : Pulse shaping
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: April 2, 2010
Revised Manuscript: May 28, 2010
Manuscript Accepted: June 4, 2010
Published: June 10, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Jeffrey J. Field, Ramón Carriles, Kraig E. Sheetz, Eric V. Chandler, Erich E. Hoover, Shane E. Tillo, Thom E. Hughes, Anne W. Sylvester, David Kleinfeld, and Jeff A. Squier, "Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation," Opt. Express 18, 13661-13672 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-13-13661


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005). [CrossRef] [PubMed]
  3. E. J. Sánchez, L. Novotny, G. R. Holtom, and X. S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101(38), 7019–7023 (1997). [CrossRef]
  4. G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000). [CrossRef] [PubMed]
  5. A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, in Handbook of Biological Confocal Microscopy, 3rd. Ed., (ed. James B. Pawley) Ch. 39, 690–702 (Springer Science + Business Media, 2006).
  6. N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008). [CrossRef] [PubMed]
  7. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008). [CrossRef]
  8. G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007). [CrossRef]
  9. H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses,” Biochem. Biophys. Res. Commun. 311(3), 592–596 (2003). [CrossRef] [PubMed]
  10. J. J. Field, C. G. Durfee, J. A. Squier, and S. Kane, “Quartic-phase-limited grism-based ultrashort pulse shaper,” Opt. Lett. 32(21), 3101–3103 (2007). [CrossRef] [PubMed]
  11. R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16(14), 10364–10371 (2008). [CrossRef] [PubMed]
  12. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, (Kluwer Academic Publishers, Norwell, MA, 2000).
  13. W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, and M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt. Lett. 31(19), 2927–2929 (2006). [CrossRef] [PubMed]
  14. D. J. Kane, G. Rodriguez, A. J. Taylor, and T. S. Clement, “Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot,” J. Opt. Soc. Am. B 14(4), 935–943 (1997). [CrossRef]
  15. D. J. Kane, “Principal components generalized projections: a review [Invited],” J. Opt. Soc. Am. B 25(6), A120–A132 (2008). [CrossRef]
  16. D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Müller, “Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,” IEEE J. Quantum Electron. 35(4), 479–486 (1999). [CrossRef]
  17. M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009). [CrossRef] [PubMed]
  18. A. Shavel, N. Gaponik, and A. Eychmüller, “Covalent linking of CdTe nanocrystals to amino-functionalized surfaces,” ChemPhysChem 6(3), 449–451 (2005). [CrossRef] [PubMed]
  19. C. R. Dietrich, M. A. D. N. Perera, M. D. Yandeau-Nelson, R. B. Meeley, B. J. Nikolau, and P. S. Schnable, “Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development,” Plant J. 42(6), 844–861 (2005). [CrossRef] [PubMed]
  20. A. Mohanty, Y. Yang, A. Luo, A. W. Sylvester, and D. Jackson, “Methods for generation and analysis of fluorescent protein-tagged maize lines,” Methods Mol. Biol. 526, 71–89 (2009). [CrossRef] [PubMed]
  21. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996). [CrossRef]
  22. A. J. Berglund, “Nonexponential statistics of fluorescence photobleaching,” J. Chem. Phys. 121(7), 2899–2903 (2004). [CrossRef] [PubMed]
  23. W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, and A. Meijerink, “Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy,” J. Phys. Chem. B 105(35), 8281–8284 (2001). [CrossRef]
  24. C. Bardeen, V. Yakovlev, J. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4(3), 362–367 (1999). [CrossRef]
  25. D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 (1997). [CrossRef]
  26. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006). [CrossRef] [PubMed]
  27. J. J. Field, T. A. Planchon, W. Amir, C. G. Durfee, and J. A. Squier, “Characterization of a high efficiency, ultrashort pulse shaper incorporating a reflective 4096-element spatial light modulator,” Opt. Commun. 278(2), 368–376 (2007). [CrossRef] [PubMed]
  28. M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited