OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses

Yasuyuki Ozeki, Yuma Kitagawa, Kazuhiko Sumimura, Norihiko Nishizawa, Wataru Umemura, Shin’ichiro Kajiyama, Kiichi Fukui, and Kazuyoshi Itoh  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13708-13719 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2901 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate the use of subharmonically synchronized laser pulses for low-noise lock-in detection in stimulated Raman scattering (SRS) microscopy. In the experiment, Yb-fiber laser pulses at a repetition rate of 38 MHz are successfully synchronized to Ti:sapphire laser pulses at a repetition rate of 76 MHz with a jitter of <8 fs by a two-photon detector and an intra-cavity electro-optic modulator. By using these pulses, high-frequency lock-in detection of SRS signal is accomplished without high-speed optical modulation. The noise level of the lock-in signal is found to be higher than the shot noise limit only by 1.6 dB. We also demonstrate high-contrast, 3D imaging of unlabeled living cells.

© 2010 OSA

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(180.5655) Microscopy : Raman microscopy

ToC Category:

Original Manuscript: May 10, 2010
Revised Manuscript: June 3, 2010
Manuscript Accepted: June 6, 2010
Published: June 10, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Yasuyuki Ozeki, Yuma Kitagawa, Kazuhiko Sumimura, Norihiko Nishizawa, Wataru Umemura, Shin’ichiro Kajiyama, Kiichi Fukui, and Kazuyoshi Itoh, "Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses," Opt. Express 18, 13708-13719 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997). [CrossRef]
  2. P. J. Campagnola, M.-D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999). [CrossRef] [PubMed]
  3. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  4. M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett. 25(24), 1768–1770 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-24-1768 . [CrossRef]
  5. K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S. Kawakami, S. Matsunaga, K. Fukui, and K. Itoh, “Stimulated parametric emission microscopy,” Opt. Express 14(2), 786–793 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-786 . [CrossRef] [PubMed]
  6. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007). [CrossRef] [PubMed]
  7. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  8. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17(5), 3651–3658 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3651 . [CrossRef] [PubMed]
  9. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” N. J. Phys. 11(3), 033026 (2009). [CrossRef]
  10. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009). [CrossRef] [PubMed]
  11. A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001). [CrossRef]
  12. J.-X. Cheng, L. D. Book, and X Sunney Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-17-1341 . [CrossRef]
  13. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-stokes raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-24-2923 . [CrossRef]
  14. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-12-1872 . [CrossRef] [PubMed]
  15. H. Kano and H. O. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 13(4), 1322–1327 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1322 . [CrossRef] [PubMed]
  16. Y. Ozeki and K. Itoh, “Stimulated Raman scattering microscopy for live-cell imaging with high contrast and high sensitivity,” Laser Phys. 20(5), 1114–1118 (2010). [CrossRef]
  17. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005). [CrossRef] [PubMed]
  18. C. Heinrich, A. Hofer, A. Ritsch, C. Ciardi, S. Bernet, and M. Ritsch-Marte, “Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy,” Opt. Express 16(4), 2699–2708 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2699 . [CrossRef] [PubMed]
  19. T. Minamikawa, M. Hashimoto, K. Fujita, S. Kawata, and T. Araki, “Multi-focus excitation coherent anti-Stokes Raman scattering (CARS) microscopy and its applications for real-time imaging,” Opt. Express 17(12), 9526–9536 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-9526 . [CrossRef] [PubMed]
  20. B. F. Levine, C. V. Shank, and J. P. Heritage, “Surface vibrational spectroscopy using stimulated Raman scattering,” IEEE J. Quantum Electron. 15(12), 1418–1432 (1979). [CrossRef]
  21. B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12532 . [CrossRef] [PubMed]
  22. D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-21-2948 . [CrossRef] [PubMed]
  23. R. Salem and T. E. Murphy, “Broad-band optical clock recovery system using two-photon absorption,” IEEE Photon. Technol. Lett. 16(9), 2141–2143 (2004). [CrossRef]
  24. T. Minamikawa, N. Tanimito, M. Hashimoto, T. Araki, M. Kobayashi, K. Fujita, and S. Kawata, “Jitter reduction of two synchronized picosecond mode-locked lasers using balanced cross-correlator with two-photon detectors,” Appl. Phys. Lett. 89(19), 191101 (2006). [CrossRef]
  25. S. Takasaka, Y. Ozeki, S. Namiki, and M. Sakano, “External synchronization of 160-GHz optical beat signal by optical phase-locked loop technique,” IEEE Photon. Technol. Lett. 18(23), 2457–2459 (2006). [CrossRef]
  26. Y. Kobayashi, X. Zhou, D. Yoshitomi, and K. Torizuka, “Passive timing synchronization between Ti:sapphire laser and Yb-doped fiber laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CML6. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CML6 .
  27. R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, “Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,” Opt. Lett. 27(5), 312–314 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-5-312 . [CrossRef]
  28. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-11-947 . [CrossRef] [PubMed]
  29. D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, “Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-Stokes Raman scattering microscopy,” Rev. Sci. Instrum. 73(8), 2843–2848 (2002). [CrossRef]
  30. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-9-1292 . [CrossRef] [PubMed]
  31. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-13-2051 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MPG (11850 KB)     
» Media 2: MPG (11329 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited