OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation

Masahiro Yamanari, Shuichi Makita, Yiheng Lim, and Yoshiaki Yasuno  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13964-13980 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3590 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) is used to measure three-dimensional phase-retardation images of birefringent biological tissue in vivo. PS-SS-OCT with continuous source polarization modulation is used to multiplex the incident states of polarization in the signal frequency of each A-scan. Although it offers the advantage of measurement speed that is as high as that of standard SS-OCT, its disadvantage is low axial measurement range. To overcome this drawback, we employed the B-M-mode scan (BM-scan) method, which removes complex conjugate ambiguity by applying phase modulation along the transversal scanning direction. Since polarization modulation and BM-scan are applied in different scanning directions, these methods can be combined to make the optimum use of both full range and polarization-sensitive imaging. Phase fluctuations that cause measurement failure were numerically canceled before demodulating the B-scan oriented modulation. After removing complex conjugate artifacts, the axial measurement range was 5.35 mm, and the signal-to-conjugate ratio was 40.5 dB. We demonstrated retinal imaging using the PS-SS-OCT system with a frequency-swept laser at a center wavelength of 1064 nm and an axial resolution of 11.4 µm in tissue. Full-range polarization-sensitive retinal images showed characteristic birefringence of fibrous tissues such as retinal nerve fiber, sclera, and lamina cribrosa.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 5, 2010
Revised Manuscript: June 11, 2010
Manuscript Accepted: June 11, 2010
Published: June 15, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Masahiro Yamanari, Shuichi Makita, Yiheng Lim, and Yoshiaki Yasuno, "Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation," Opt. Express 18, 13964-13980 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992). [CrossRef]
  2. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997). [CrossRef] [PubMed]
  3. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004). [CrossRef] [PubMed]
  4. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008). [CrossRef] [PubMed]
  5. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008). [CrossRef] [PubMed]
  6. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006). [CrossRef] [PubMed]
  7. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). [CrossRef] [PubMed]
  8. C. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001). [CrossRef] [PubMed]
  9. S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Fiber-based polarization-sensitive Müller matrix optical coherence tomography with continuous source polarization modulation,” Appl. Opt. 44, 5463–5467 (2005). [CrossRef] [PubMed]
  10. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002). [CrossRef]
  11. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004). [CrossRef]
  12. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13, 3931–3944 (2005). [CrossRef] [PubMed]
  13. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005). [CrossRef] [PubMed]
  14. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006). [CrossRef] [PubMed]
  15. W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16, 1096–1103 (2008). [CrossRef] [PubMed]
  16. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008). [CrossRef] [PubMed]
  17. T. Schmoll, E. Götzinger, M. Pircher, C. K. Hitzenberger, and R. A. Leitgeb, “Single-camera polarization sensitive spectral-domain oct by spatial frequency encoding,” Opt. Lett. 35, 241–243 (2010). [CrossRef] [PubMed]
  18. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-μm probe,” Opt. Express 17, 12385–12396 (2009). [CrossRef] [PubMed]
  19. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic oct at 1050 nm,” Opt. Express 11, 1980–1986 (2003). [CrossRef] [PubMed]
  20. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, and A. Chavez-Pirson, “andW. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005). [CrossRef] [PubMed]
  21. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14, 4403–4411 (2006). [CrossRef] [PubMed]
  22. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007). [CrossRef] [PubMed]
  23. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, and S. Blinder, “andW. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007). [CrossRef] [PubMed]
  24. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008). [CrossRef] [PubMed]
  25. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett. 33, 2479–2481 (2008). [PubMed]
  26. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 khz tuning repetition rate ultrahigh-speed wavelength swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005). [CrossRef] [PubMed]
  27. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006). [CrossRef] [PubMed]
  28. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002). [CrossRef]
  29. J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033–6039 (2004). [CrossRef] [PubMed]
  30. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10, 064005 (2005). [CrossRef]
  31. M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source oct using 3x3 fiber couplers,” Opt. Express 13, 957–967 (2005). [CrossRef] [PubMed]
  32. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency domain imaging through polarization-based optical demodulation,” Opt. Lett. 31, 362–364 (2006). [CrossRef] [PubMed]
  33. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17, 7–24 (2009). [CrossRef] [PubMed]
  34. B. Hofer, B. Považay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm,” Opt. Express 18, 4898–4919 (2010). [CrossRef] [PubMed]
  35. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous b-m-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006). [CrossRef] [PubMed]
  36. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007). [CrossRef]
  37. S. Vergnole, G. Lamouche, and M. L. Dufour, “Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher,” Opt. Lett. 33, 732–734 (2008). [CrossRef] [PubMed]
  38. C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15, 7950–7961 (2007). [CrossRef] [PubMed]
  39. L. An, and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425 (2007). [CrossRef] [PubMed]
  40. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007). [CrossRef] [PubMed]
  41. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453–3455 (2007). [CrossRef] [PubMed]
  42. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005). [CrossRef] [PubMed]
  43. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1μm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008). [CrossRef] [PubMed]
  44. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004). [CrossRef] [PubMed]
  45. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010). [CrossRef] [PubMed]
  46. C. Brosseau, Fundamentals of polarized light: a statistical optics approach (John Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3116 KB)     
» Media 2: AVI (11238 KB)     
» Media 3: AVI (3670 KB)     
» Media 4: AVI (12626 KB)     
» Media 5: AVI (2862 KB)     
» Media 6: AVI (13818 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited