OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Quantitative SLM-based differential interference contrast imaging

Timothy J. McIntyre, Christian Maurer, Stephanie Fassl, Saranjam Khan, Stefan Bernet, and Monika Ritsch-Marte  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 14063-14078 (2010)
http://dx.doi.org/10.1364/OE.18.014063


View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the implementation of quantitative Differential Interference Contrast (DIC) Microscopy using a spatial light modulator (SLM) as a flexible Fourier filter in the optical path. The experimental arrangement allows for the all-electronic acquisition of multiple phase shifted DIC-images at video rates which are analyzed to yield the optical path length variation of the sample. The resolution of the technique is analyzed by retrieving the phase profiles of polystyrene spheres in immersion oil, and the method is then applied for quantitative imaging of biological samples. By reprogramming the diffractive structure displayed at the SLM it is possible to record the whole set of phase shifted DIC images simultaneously in different areas of the same camera chip. This allows for quantitative snap-shot imaging of a sample, which has applications for the investigation of dynamic processes.

© 2010 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.3170) Microscopy : Interference microscopy

ToC Category:
Microscopy

History
Original Manuscript: April 16, 2010
Revised Manuscript: May 28, 2010
Manuscript Accepted: June 6, 2010
Published: June 15, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Timothy J. McIntyre, Christian Maurer, Stephanie Fassl, Saranjam Khan, Stefan Bernet, and Monika Ritsch-Marte, "Quantitative SLM-based differential interference contrast imaging," Opt. Express 18, 14063-14078 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-13-14063


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Nomarski, “Microinterferometrie differentiel a ondes polarisees,” J. Phys. Radium 16, 9S–11S (1955).
  2. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004). [CrossRef] [PubMed]
  3. C. Preza, D. L. Snyder, and J. A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy,” J. Opt. Soc. Am. A 16, 2185–2199 (1999). [CrossRef]
  4. M. Shribak, and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Appl. Opt. 45, 460–469 (2006). [CrossRef] [PubMed]
  5. M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, “Orientation-independent differential interference contrast microscopy and its combination with an orientation independent polarization system,” J. Biomed. Opt. 13, 014011 (2008). [CrossRef] [PubMed]
  6. B. Heise, and D. Stifter, “Quantitative phase reconstruction for orthogonal-scanning differential phase-contrast optical coherence tomography,” Opt. Lett. 34, 1306–1308 (2009). [CrossRef] [PubMed]
  7. B. Kemper, and G. von Bally, “Digital holographic microscopy for life cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008). [CrossRef] [PubMed]
  8. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006). [CrossRef]
  9. P. Ferraro, D. Alferi, S. D. Nicola, L. D. Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31(10), 1405–1407 (2006). [CrossRef] [PubMed]
  10. J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34(5), 653–655 (2009). [CrossRef] [PubMed]
  11. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–769 (2009). [CrossRef] [PubMed]
  12. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005). [CrossRef] [PubMed]
  13. H. Ding, and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010). [CrossRef] [PubMed]
  14. A. Grjasnow, A. Wuttig, and R. Riesenberg, “Phase resolving microscopy by multi-plane diffraction detection,” J. Microsc. 231(1), 115–123 (2008). [CrossRef] [PubMed]
  15. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006). [CrossRef] [PubMed]
  16. C. Maurer, S. Bernet, and M. Ritsch-Marte, “Refining common path interferometry with a spiral-phase Fourier filter,” J. Opt. A, Pure Appl. Opt. 11(8), 094023 (2009). [CrossRef]
  17. T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett. 34, 2988–2990 (2009). [CrossRef] [PubMed]
  18. E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein, “Diffractive optical elements for differential interference contrast x-ray microscopy,” Opt. Express 11, 2278–2288 (2003). [CrossRef] [PubMed]
  19. A. Y. M. Ng, C. W. See, and M. G. Somekh, “Quantitative optical microscope with enhanced resolution using a pixilated liquid crystal spatial light modulator,” J. Microsc. 214(3), 334–340 (2004). [CrossRef] [PubMed]
  20. C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express 3, 3023–3034 (2010). [CrossRef]
  21. J. A. Davis, and D. M. Cottrell, “Random mask encoding of multiplexed phase-only and binary phase-only filters,” Opt. Lett. 19, 496–498 (1994). [CrossRef] [PubMed]
  22. D. C. Ghiglia, and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software, (New York: Wiley-Interscience, 1998).
  23. A. Agrawal, R. Chellappa, and R. Raskar, “An algebraic approach to surface reconstruction from gradient fields,” International conference on computer vision (ICCV) (2005).
  24. A. Agrawal, R. Raskar, and R. Chellappa, “What is the range of surface reconstructions from a gradient field?” European conference on Computer Vision (ECCV) (2006).
  25. O. von Hofsten, M. Bertilson, and U. Vogt, “Theoretical development of a high-resolution differential-interference contrast optic for x-ray microscopy,” Opt. Express 16, 1132–1141 (2008). [CrossRef] [PubMed]
  26. C. P. Brophy, “Effect of intensity error correlation on the computed phase of phase-shifting interferometry,” J. Opt. Soc. Am. A 7, 537–541 (1990). [CrossRef]
  27. I. D. Nikolov, and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Opt. 39, 2067–2070 (2000). [CrossRef]
  28. X. Ma, J. Q. Lu, R. S. Scott, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003). [CrossRef]
  29. N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006). [CrossRef]
  30. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, and M. S. Feld, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105, 13730–13735 (2008). [CrossRef] [PubMed]
  31. R. W. Gerchberg, and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited