OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Structural coloration and photonic pseudogap in natural random close-packing photonic structures

B. Q. Dong, X. H. Liu, T. R. Zhan, L. P. Jiang, H. W. Yin, F. Liu, and J. Zi  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14430-14438 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2924 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scales on the elytra of longhorn beetle Anoplophora graafi display diverse non-iridescent colors ranging from blue, green, yellow, and red to purple. By structural characterizations, optical measurements, and theoretical calculations, we found that the scale colors stem from an amorphous photonic structure possessing only short-range order: random close-packing of chitin nanoparticles. Our results showed that direction-independent photonic pseudogaps found in the photon density of states of the random close-packing photonic structure are the ultimate physical origin for non-iridescent coloration of scales. The color steering strategy of scales is ingenious, simply by varying the size of chitin nanoparticles. Revealed natural random close-packing photonic structures and the color steering strategy of scales could render valuable inspiration for the artificial fabrication and design of photonic structures and devices as well.

© 2010 OSA

OCIS Codes
(290.4210) Scattering : Multiple scattering
(330.1710) Vision, color, and visual optics : Color, measurement
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: April 28, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: June 20, 2010
Published: June 22, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

B. Q. Dong, X. H. Liu, T. R. Zhan, L. P. Jiang, H. W. Yin, F. Liu, and J. Zi, "Structural coloration and photonic pseudogap in natural random close-packing photonic structures," Opt. Express 18, 14430-14438 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. H. Stillinger and T. A. Weber, “Packing structures and transitions in liquids and solids,” Science 225(4666), 983–989 (1984). [CrossRef] [PubMed]
  2. H. M. Jaeger and S. R. Nagel, “Physics of the granular state,” Science 255(5051), 1523–1531 (1992). [CrossRef] [PubMed]
  3. R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983).
  4. K. J. Rao, Structural Chemistry of Glasses (Elsevier, Amsterdam, 2002).
  5. P. Häussler, “Interrelations between atomic and electronic-structures – liquid and amorphous metals as model systems,” Phys. Rep. 222(2), 65–143 (1992). [CrossRef]
  6. Bulk Metallic Glasses, edited by M. Miller and P. Liaw (Springer, New York, 2007).
  7. Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12(10), 693–713 (2000). [CrossRef]
  8. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  9. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed., (Princeton University Press, Princeton, NJ, 2008).
  11. L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004). [CrossRef] [PubMed]
  12. P. D. García, R. Sapienza, Á. Blanco, and C. López, “Photonic glass: A novel random material for light,” Adv. Mater. 19(18), 2597–2602 (2007). [CrossRef]
  13. R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007). [CrossRef]
  14. K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008). [CrossRef] [PubMed]
  15. K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) (24), 3603–3605 (2009). [CrossRef]
  16. A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2(6), 201–213 (2000). [CrossRef]
  17. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003). [CrossRef] [PubMed]
  18. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008). [CrossRef]
  19. H. Ghiradella, “Light and color on the wing - structural colors in butterflies and moths,” Appl. Opt. 30(24), 3492–3500 (1991). [CrossRef] [PubMed]
  20. A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. P. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001). [CrossRef] [PubMed]
  21. J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003). [CrossRef] [PubMed]
  22. J. Dyck, “Structure and colour-production of the blue barbs of Agapornis roseicollis and Cotinga maynana,” Z. Zellforsch. Mikrosk. Anat. 115(1), 17–29 (1971). [CrossRef] [PubMed]
  23. R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998). [CrossRef]
  24. R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol. 207(22), 3999–4009 (2004). [CrossRef] [PubMed]
  25. M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009). [PubMed]
  26. E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao, and R. O. Prum, “Self-assembly of amorphous biophotonic nanostructures by phase separation,” Soft Matter 5(9), 1792–1795 (2009). [CrossRef]
  27. W. S. Jodrey and E. M. Tory, “Computer simulation of close random packing of equal spheres,” Phys. Rev. A 32(4), 2347–2351 (1985). [CrossRef] [PubMed]
  28. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  29. C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B Condens. Matter 51(23), 16635–16642 (1995). [CrossRef] [PubMed]
  30. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  31. CVRL Color & Vision database, http://www.cvrl.org .
  32. F. W. Billmeyer and M. Saltzman, Principles of Color Technology, 2nd edn. (Wiley, New York, 1981).
  33. Commission internationale de l'Eclairage proceedings, 1931 (Cambridge University Press, Cambridge, 1932).
  34. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  35. Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), R13357–R13360 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 3 Fig. 2
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited