OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Three-dimensional nanoscale Far-field Focusing of Radially Polarized Light by Scattering the SPPs with an Annular Groove

Maoguo Zhang, Jinglei Du, Haofei Shi, Shaoyun Yin, Liangping Xia, Baohua Jia, Min Gu, and Chunlei Du  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14664-14670 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (820 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three-dimensional (3D) nanoscale focusing of radially polarized light in far field by a simple plasmonic lens composed of an annular slit and a single concentric groove is reported. The numerical calculations reveal that the incident light is coupled to surface plasmon polaritons (SPP) by the annular slit and a focal spot with a size less than a half of the illumination wavelength is formed in the far field due to the constructive interference of the scattered light by the groove. More importantly, the focal length can be modulated by changing the groove diameter. This structure provides an admirable choice for the nano-optical devices.

© 2010 OSA

OCIS Codes
(220.2560) Optical design and fabrication : Propagating methods
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: May 14, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: June 8, 2010
Published: June 23, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Maoguo Zhang, Jinglei Du, Haofei Shi, Shaoyun Yin, Liangping Xia, Baohua Jia, Min Gu, and Chunlei Du, "Three-dimensional nanoscale far-field focusing of radially polarized light by scattering the SPPs with an annular groove," Opt. Express 18, 14664-14670 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  2. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  3. D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92(23), 3 (2008). [CrossRef]
  4. Y. Y. Yu, D. Z. Lin, L. S. Huang, and C. K. Lee, “Effect of subwavelength annular aperture diameter on the nondiffracting region of generated Bessel beams,” Opt. Express 17(4), 2707–2713 (2009). [CrossRef] [PubMed]
  5. F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003). [CrossRef]
  6. B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009). [CrossRef]
  7. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007). [CrossRef]
  8. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009). [CrossRef]
  9. P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009). [CrossRef] [PubMed]
  10. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007). [CrossRef]
  11. F. López-Tejeira, F. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005). [CrossRef]
  12. A. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 35129 (2007). [CrossRef]
  13. L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005). [CrossRef]
  14. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006). [CrossRef] [PubMed]
  15. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Appl. Phys. Lett. 91(23), 233901 (2003). [CrossRef]
  16. Y. Kozawa and S. Sato, “Focusing property of a double-ring-shaped radially polarized beam,” Opt. Lett. 31(6), 820–822 (2006). [CrossRef] [PubMed]
  17. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008). [CrossRef] [PubMed]
  18. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices,” Opt. Express 14(10), 4208–4220 (2006). [CrossRef] [PubMed]
  19. S. Quabis, R. Dorn, M. Eberler, O. Gl ckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000). [CrossRef]
  20. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  21. P. Edward, Handbook of Optical Constants of Solids, 1st edition (Academic Press, 1997).
  22. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited