OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Microdome-gooved Gd2O2S:Tb scintillator for flexible and high resolution digital radiography

Phill Gu Jung, Chi Hoon Lee, Kong Myeong Bae, Jae Min Lee, Sang Min Lee, Chang Hwy Lim, Seungman Yun, Ho Kyung Kim, and Jong Soo Ko  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14850-14858 (2010)
http://dx.doi.org/10.1364/OE.18.014850


View Full Text Article

Acrobat PDF (1437 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A flexible microdome-grooved Gd2O2S:Tb scintillator is simulated, fabricated, and characterized for digital radiography applications. According to Monte Carlo simulation results, the dome-grooved structure has a high spatial resolution, which is verified by X-ray image performance of the scintillator. The proposed scintillator has lower X-ray sensitivity than a nonstructured scintillator but almost two times higher spatial resolution at high spatial frequency. Through evaluation of the X-ray performance of the fabricated scintillators, we confirm that the microdome-grooved scintillator can be applied to next-generation flexible digital radiography systems requiring high spatial resolution.

© 2010 OSA

OCIS Codes
(170.7440) Medical optics and biotechnology : X-ray imaging
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 29, 2010
Revised Manuscript: June 22, 2010
Manuscript Accepted: June 23, 2010
Published: June 28, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Phill Gu Jung, Chi Hoon Lee, Kong Myeong Bae, Jae Min Lee, Sang Min Lee, Chang Hwy Lim, Seungman Yun, Ho Kyung Kim, and Jong Soo Ko, "Microdome-gooved Gd2O2S:Tb scintillator for flexible and high resolution digital radiography," Opt. Express 18, 14850-14858 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-14-14850


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squillante, and G. Entine, “Structured CsI(Tl) Scintillators for X-ray Imaging Applications,” IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998). [CrossRef]
  2. X. Badel, A. Galeckas, J. Linnros, P. Kleimann, C. Fröjdh, and C. S. Petersson, “Improvement of an X-ray imaging detector based on a scintillating guides screen,” Nucl. Instr. and Meth. A 487(1-2), 129–135 (2002). [CrossRef]
  3. M. Simon, K. J. Engel, B. Menser, X. Badel, and J. Linnros, “X-ray imaging performance of scintillator-filled silicon pore arrays,” Med. Phys. 35(3), 968–981 (2008). [CrossRef] [PubMed]
  4. B. Wowk, S. Shalev, and T. Radcliffe, “Grooved phosphor screens for on-line portal imaging,” Med. Phys. 20(6), 1641–1651 (1993). [CrossRef] [PubMed]
  5. Y. Zhou, A. Avila-Muñoz, S. Tao, Z. Gu, A. Nathan, and J. A. Rowlands, “Resolution enhancement and performance characteristics of large area a-Si:H x-ray imager with a high aspect ratio SU-8 micromould,” Proc. SPIE 4925, 156–165 (2002).
  6. A. Sawant, L. E. Antonuk, Y. El-Mohri, Y. Li, Z. Su, Y. Wang, J. Yamamoto, Q. Zhao, H. Du, J. Daniel, and R. Street, “Segmented phosphors: MEMS-based high quantum efficiency detectors for megavoltage x-ray imaging,” Med. Phys. 32(2), 553–565 (2005). [CrossRef] [PubMed]
  7. I. D. Jung, M. K. Cho, S. M. Lee, K. M. Bae, P. G. Jung, C. H. Lee, J. M. Lee, S. Yun, H. K. Kim, S. S. Kim, and J. S. Ko, “Flexible Gd2O2S:Tb scintillators pixelated with polyethylene microstructures for digital x-ray image sensors,” J. Micromech. Microeng. 19(1), 015014 (2009). [CrossRef]
  8. R. A. Street, W. S. Wong, S. Ready, R. Lujan, A. C. Arias, M. L. Chabinyc, A. Salleo, R. Apte, and L. E. Antonuk, “Printed Active-Matrix TFT Arrays for X-Ray Imaging,” Proc. SPIE 5745, 7–17 (2005).
  9. T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92(21), 213303 (2008). [CrossRef]
  10. J. C. Blakesley and R. Speller, “Modeling the imaging performance of prototype organic x-ray imagers,” Med. Phys. 35(1), 225–239 (2008). [CrossRef] [PubMed]
  11. P. E. Keivanidis, N. C. Greenham, H. Sirringhaus, R. H. Friend, J. C. Blakesley, and R. Speller, “M.C. -Quiles, T. Agostinelli, D.D.C. Bradley, J. Nelson, "X-ray stability and response of polymeric photodiodes for imaging applications,” Appl. Phys. Lett. 92, 023304 (2008). [CrossRef]
  12. G. Hull, S. Du, T. Niedermayr, S. Payne, N. Cherepy, A. Drobshoff, and L. Fabris, “Light collection optimization in scintillator-based gamma-ray spectrometers,” Nucl. Instr. and Meth. A 588(3), 384–388 (2008). [CrossRef]
  13. F. Cayouette, C. Moisan, N. Zhang, and C. J. Thompson, “Monte-Carlo Modeling of Scintillator Crystal Performance for Stratified PET Detectors with DETECT2000,” IEEE Trans. Nucl. Sci. 49(3), 624–628 (2002). [CrossRef]
  14. A. Badano, R. M. Gagne, B. D. Gallas, R. J. Jennings, J. S. Boswell, and K. J. Myers, “Lubberts effect in columnar phosphors,” Med. Phys. 31(11), 3122–3131 (2004). [CrossRef] [PubMed]
  15. S.-I. Chang and J.-B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12(25), 6366–6371 (2004). [CrossRef] [PubMed]
  16. X.-J. Huang, J.-H. Lee, J.-W. Lee, J.-B. Yoon, and Y.-K. Choi, “A one-step route to a perfectly ordered wafer-scale microbowl array for size-dependent superhydrophobicity,” Small 4(2), 211–216 (2008). [CrossRef] [PubMed]
  17. X.-J. Huang, D.-H. Kim, M. Im, J.-H. Lee, J.-B. Yoon, and Y.-K. Choi, ““Lock-and-key” geometry effect of patterned surfaces: wettability and switching of adhesive force,” Small 5(1), 90–94 (2009). [CrossRef] [PubMed]
  18. J. C. Dainty, and R. Shaw, Image Science (Academic Press, London, 1974).
  19. R. Shaw, “The equivalent quantum efficiency of the photographic process,” J. Photogr. Sci. 11, 199–204 (1963).
  20. International Commission on Radiation Units and Measurements Report 54, Medical Imaging—the Assessment of Image Quality (ICRU, Bethesda, MD, 1996).
  21. International Electrotechnical Commission, International Standard IEC 62220-1, Medical electrical equipment—Characteristics of digital imaging devices—Part 1: Determination of the detective quantum efficiency, (IEC, Geneva, 2003).
  22. C. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, and K. J. Myers, “Toward consensus on quantitative assessment of medical imaging systems,” Med. Phys. 22(7), 1057–1061 (1995). [CrossRef] [PubMed]
  23. E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998). [CrossRef] [PubMed]
  24. J. H. Siewerdsen, L. E. Antonuk, Y. el-Mohri, J. Yorkston, W. Huang, and I. A. Cunningham, “Signal, noise power spectrum, and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology,” Med. Phys. 25(5), 614–628 (1998). [CrossRef] [PubMed]
  25. J. T. Dobbins, E. Samei, N. T. Ranger, and Y. Chen, “Intercomparison of methods for image quality characterization. II. Noise power spectrum,” Med. Phys. 33(5), 1466–1475 (2006). [CrossRef] [PubMed]
  26. Y. Wang, L. E. Antonuk, Y. El-Mohri, and Q. Zhao, “A Monte Carlo investigation of Swank noise for thick, segmented, crystalline scintillators for radiotherapy imaging,” Med. Phys. 36(7), 3227–3238 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited