OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010

Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator

Huan Wang and Ka-Di Zhu  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 16175-16182 (2010)
http://dx.doi.org/10.1364/OE.18.016175


View Full Text Article

Enhanced HTML    Acrobat PDF (833 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have theoretically investigated a hybrid nanocrystal complex consisted of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) embedded in a nanomechanical resonator in the simultaneous presence of a strong control field and a weak probe field. It is shown that the resonance amplification peak of the probe spectrum will enhance dramatically due to the coupling of the plasmon, exciton and nanomechanical resonator. The enhancement increases significantly with decreasing the distance between the metal nanoparticle and a quantum dot, which implies the strong plasmon enhancement effect in this coupled system. The results obtained here may have the potential applications such as tunable Raman lasers and bio-sensors.

© 2010 Optical Society of America

OCIS Codes
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(240.6680) Optics at surfaces : Surface plasmons
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 12, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: June 29, 2010
Published: July 15, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Huan Wang and Ka-Di Zhu, "Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator," Opt. Express 18, 16175-16182 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-15-16175


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997). [CrossRef] [PubMed]
  2. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003). [CrossRef] [PubMed]
  3. A. O. Govorov, and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620 (2007). [CrossRef] [PubMed]
  4. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005). [CrossRef] [PubMed]
  5. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698 (2007). [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006). [CrossRef] [PubMed]
  7. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).
  8. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007). [CrossRef] [PubMed]
  9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006). [CrossRef] [PubMed]
  10. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006). [CrossRef]
  11. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef]
  12. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle system: Double peaked Fano structure and bistability,” Nano Lett. 8, 2106 (2008). [CrossRef] [PubMed]
  13. S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009). [CrossRef]
  14. Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008). [CrossRef]
  15. Z. E. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009). [CrossRef]
  16. A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143 (1992). [CrossRef]
  17. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005). [CrossRef] [PubMed]
  18. H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008). [CrossRef] [PubMed]
  19. M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007). [CrossRef] [PubMed]
  20. K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469 (2004). [CrossRef]
  21. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004). [CrossRef] [PubMed]
  22. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2006). [CrossRef]
  23. M. E. Dickinson, K. V. Wolf, and A. B. Mann, “Nanomechanical and chemical characterization of incipient in vitro carious lesions in human dental enamel,” Arch. Oral Biol. 52, 753 (2007). [CrossRef] [PubMed]
  24. S. H. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sens. Actuators B 119, 466 (2006). [CrossRef]
  25. I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004). [CrossRef] [PubMed]
  26. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002). [CrossRef] [PubMed]
  27. S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005). [CrossRef]
  28. T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309 (2004). [CrossRef]
  29. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005). [CrossRef] [PubMed]
  30. J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008). [CrossRef]
  31. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136 (2008). [CrossRef]
  32. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31, 2592 (2006). [CrossRef] [PubMed]
  33. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
  34. R. W. Boyd, Nonlinear Optics (Academic, San Diego, California, 1992) p.225.
  35. J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system,” Appl. Phys. Lett. 94, 063116 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited