OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010

Wavefront image sensor chip

Xiquan Cui, Jian Ren, Guillermo J. Tearney, and Changhuei Yang  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16685-16701 (2010)
http://dx.doi.org/10.1364/OE.18.016685


View Full Text Article

Enhanced HTML    Acrobat PDF (1988 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the implementation of an image sensor chip, termed wavefront image sensor chip (WIS), that can measure both intensity/amplitude and phase front variations of a light wave separately and quantitatively. By monitoring the tightly confined transmitted light spots through a circular aperture grid in a high Fresnel number regime, we can measure both intensity and phase front variations with a high sampling density (11 µm) and high sensitivity (the sensitivity of normalized phase gradient measurement is 0.1 mrad under the typical working condition). By using WIS in a standard microscope, we can collect both bright-field (transmitted light intensity) and normalized phase gradient images. Our experiments further demonstrate that the normalized phase gradient images of polystyrene microspheres, unstained and stained starfish embryos, and strongly birefringent potato starch granules are improved versions of their corresponding differential interference contrast (DIC) microscope images in that they are artifact-free and quantitative. Besides phase microscopy, WIS can benefit machine recognition, object ranging, and texture assessment for a variety of applications.

© 2010 OSA

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(110.1220) Imaging systems : Apertures
(130.0130) Integrated optics : Integrated optics

ToC Category:
Imaging Systems

History
Original Manuscript: May 13, 2010
Revised Manuscript: July 9, 2010
Manuscript Accepted: July 20, 2010
Published: July 23, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Xiquan Cui, Jian Ren, Guillermo J. Tearney, and Changhuei Yang, "Wavefront image sensor chip," Opt. Express 18, 16685-16701 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-16-16685


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Stanley., “Amoebiasis,” Lancet 361(9362), 1025–1034 (2003). [CrossRef] [PubMed]
  2. M. M. Haglund, M. S. Berger, and D. W. Hochman, “Enhanced optical imaging of human gliomas and tumor margins,” Neurosurgery 38(2), 308–317 (1996). [CrossRef] [PubMed]
  3. J. Van Blerkom, H. Bell, and G. Henry, “The occurrence, recognition and developmental fate of pseudo-multipronuclear eggs after in-vitro fertilization of human oocytes,” Hum. Reprod. 2(3), 217–225 (1987). [PubMed]
  4. R. J. Sommer and P. W. Sternberg, “Changes of induction and competence during the evolution of vulva development in nematodes,” Science 265(5168), 114–118 (1994). [CrossRef] [PubMed]
  5. G. Nomarski, “New theory of image formation in differential interference microscopy,” J. Opt. Soc. Am. 59, 1524 (1969).
  6. F. Zernike, “Phase contrast, a new method for the microsopic observation of transparent objects,” Physica 9(7), 686–698 (1942). [CrossRef]
  7. R. Hoffman and L. Gross, “The modulation contrast microscope,” Nature 254(5501), 586–588 (1975). [CrossRef] [PubMed]
  8. B. C. Albensi, E. V. Ilkanich, G. Dini, and D. Janigro, “Elements of Scientific Visualization in Basic Neuroscience Research,” Bioscience 54(12), 1127–1137 (2004). [CrossRef]
  9. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005). [CrossRef] [PubMed]
  10. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef] [PubMed]
  11. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006). [CrossRef] [PubMed]
  12. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998). [CrossRef]
  13. X. Q. Cui, M. Lew, and C. H. Yang, “Quantitative differential interference contrast microscopy based on structured-aperture interference,” Appl. Phys. Lett. 93(9), 091113 (2008). [CrossRef]
  14. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001). [PubMed]
  15. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  16. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  17. R. V. Shack and B. C. Platt, “Production and use of a lenticular hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).
  18. Y. Carmon and E. N. Ribak, “Phase retrieval by demodulation of a Hartmann-Shack sensor,” Opt. Commun. 215(4-6), 285–288 (2003). [CrossRef]
  19. http://www.olympusmicro.com/primer/anatomy/kohler.html .
  20. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004). [CrossRef] [PubMed]
  21. S. B. Mehta and C. J. R. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34(13), 1924–1926 (2009). [CrossRef] [PubMed]
  22. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  23. J. G. Wu, Z. Yaqoob, X. Heng, L. M. Lee, X. Q. Cui, and C. H. Yang, “Full field phase imaging using a harmonically matched diffraction grating pair based homodyne quadrature interferometer,” Appl. Phys. Lett. 90(15), 151123 (2007). [CrossRef]
  24. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002). [CrossRef] [PubMed]
  25. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (13879 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited