OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010

On the origin of visibility contrast in x-ray Talbot interferometry

W. Yashiro, Y. Terui, K. Kawabata, and A. Momose  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16890-16901 (2010)
http://dx.doi.org/10.1364/OE.18.016890


View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The reduction in visibility in x-ray grating interferometry based on the Talbot effect is formulated by the autocorrelation function of spatial fluctuations of a wavefront due to unresolved micron-size structures in samples. The experimental results for microspheres and melamine sponge were successfully explained by this formula with three parameters characterizing the wavefront fluctuations: variance, correlation length, and the Hurst exponent. The ultra-small-angle x-ray scattering of these samples was measured, and the scattering profiles were consistent with the formulation. Furthermore, we discuss the relation between the three parameters and the features of the micron-sized structures. The visibility-reduction contrast observed by x-ray grating interferometry can thus be understood in relation to the structural parameters of the microstructures.

© 2010 Optical Society of America

OCIS Codes
(110.6760) Imaging systems : Talbot and self-imaging effects
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(340.7450) X-ray optics : X-ray interferometry

ToC Category:
X-ray Optics

History
Original Manuscript: April 2, 2010
Revised Manuscript: June 11, 2010
Manuscript Accepted: July 3, 2010
Published: July 26, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
W. Yashiro, Y. Terui, K. Kawabata, and A. Momose, "On the origin of visibility contrast in x-ray Talbot interferometry," Opt. Express 18, 16890-16901 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-16-16890


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Fitzgerald, "Phase-sensitive x-ray imaging," Phys. Today 53,23-26 (2000). [CrossRef]
  2. A. Momose, "Recent advances in x-ray phase imaging," Jpn. J. Appl. Phys. 44,6355-6367 (2005). [CrossRef]
  3. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, "Demonstration of x-ray Talbot interferometry," Jpn. J. Appl. Phys. 42,L866-L868 (2003). [CrossRef]
  4. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, "Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources," Nat. Phys. 2,258-261 (2006). [CrossRef]
  5. A. Olivo and R. Speller, "A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources," Appl. Phys. Lett. 91,074106 (2007). [CrossRef]
  6. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. H. Brönnimann, C. Grünzweig, and C. David, "Hardx-ray dark-field imaging using a grating interferometer," Nat. Mat. 7,134-137 (2008). [CrossRef]
  7. Y. I. Nesterets and S. W. Wilkins, "Phase-contrast imaging using a scanning-doublegrating configuration," Opt. Express 16,5849-5867 (2008). [CrossRef] [PubMed]
  8. Y. Takeda, W. Yashiro, T. Hattori, A. Takeuchi, Y. Suzuki, and A. Momose, "Differential phase x-ray imaging microscopy with x-ray Talbot interferometer," Appl. Phys. Express 1,117002 (2008). [CrossRef]
  9. W. Yashiro, Y. Takeda, and A. Momose, "Efficiency of capturing a phase image using conebeam x-ray Talbot interferometry," J. Opt. Soc. Am. A 25,2025-2039 (2008). [CrossRef]
  10. A. Momose, W. Yashiro, and Y. Takeda, "X-ray phase imaging with Talbot interferometry," in Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, Y. Censor, M. Jiang, and G. Wang, eds., (Medical Physics Publishing, Madison, Wisconsin, USA, 2009).
  11. Z.-F. Huang, K.-J. Kang, L. Zhang, Z.-Q. Chen, F. Ding, Z.-T. Wang, and Q.-G. Fang, "Alternative method for differential phase-contrast imaging with weakly coherent hard x rays," Phys. Rev. A 79,013815 (2009). [CrossRef]
  12. A. Olivo, S. E. Bohndiek, J. A. Griffiths, A. Konstantinidis, and R. D. Speller, "A non-free-space propagation x-ray phase contrast imaging method sensitive to phase effects in two directions simultaneously," Appl. Phys. Lett. 94,044108 (2009). [CrossRef]
  13. W. Yashiro, Y. Takeda, A. Takeuchi, Y. Suzuki, and A. Momose, "Hard x-ray phase-difference microscopy using a Fresnel zone plate and a transmission grating," Phys. Rev. Lett. 103,180801 (2009). [CrossRef] [PubMed]
  14. C. Grünzweig, C. David, O. Bunk, M. Dierolf, G. Frei G. Kühne, J. Kohlbrecher, R. Schäfer, P. Lejcek, H. M. R. Ronnow, and F. Pfeiffer, "Neutron decoherence imaging for visualizing bulk magnetic domain structures," Phys. Rev. Lett. 101,025504 (2008). [CrossRef] [PubMed]
  15. M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, "Neutron dark-field tomography," Phys. Rev. Lett. 101,123902 (2008). [CrossRef] [PubMed]
  16. C. Grünzweig, C. David, O. Bunk, M. Dierolf, G. Frei, G. Kuhne, R. Schafer, S. Pofahl, H. M. R. Ronnow, and F. Pfeiffer, "Bulk magnetic domain structures visualized by neutron dark-field imaging," Appl. Phys. Lett. 93,112504 (2009). [CrossRef]
  17. F. Pfeiffer, M. Bech, O. Bunk, T. Donath, B. Henrich, P. Kraft, and C. David, "X-ray dark-field and phase-contrast imaging using a grating interferometer," J. Appl. Phys. 105,102006 (2009). [CrossRef]
  18. S. A. MacDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, "Advanced phase-contrast imaging using a grating interferometer," J. Synchrotron Radiation 16,562-572 (2009). [CrossRef]
  19. H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapacchi, "Fourier x-ray scattering radiography yields bone structural information," Radiography 251,910-918 (2009).
  20. Z.-T. Wang, K.-J. Kang, Z.-F. Huang, and Z.-Q. Chen, "Quantitative grating-based x-ray dark-field computed tomography," Appl. Phys. Lett. 95,094105 (2009). [CrossRef]
  21. R. Cerbino, L. Peverini, M. A. C. Potenza, A. Robert, P. Bosecke, and M. Giglio, "X-ray-scattering information obtained from near-field speckle," Nat. Phys. 4,238-243 (2008). [CrossRef]
  22. K. Patorski, "Self-imaging and its applications," in Progress in Optics XXVII, E. Wolf, ed., (Elsevier Science Publishers B.V., Amsterdam, 1989).
  23. Y. I. Nesterets, "On the origins of decoherence and extinction contrast in phase-contrast imaging," Opt. Commun. 281,533-542 (2008). [CrossRef]
  24. Here, we defined the pth Talbot order as it expresses the pth position where the electric field just behind the first grating is perfectly reproduced for any grating. For plane-wave illumination, the pth Talbot order corresponds to the position of zT = pd2/⌊. This definition is convenient because it is independent of what kind of grating is used as the first grating. Note that, once zT is given by pd2/⌊, we can use p for specifying any position behind the first grating instead of zT. The analytical calculations presented in this paper can be applied to any periodic image generated behind the first grating at any position of p (> 0).
  25. J. W. Goodman, Statistical Optics, (A Wiley-Interscience Publication, New York, 2000).
  26. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, "Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses," Appl. Opt. 13,2693-2703 (1974). [CrossRef] [PubMed]
  27. I. A. Vartanyants and I. K. Robinson, "Origins of decoherence in coherent x-ray diffraction experiments," Opt. Commun. 222,29-50 (2003). [CrossRef]
  28. S. K. Sinha, E. B. Sirota, and S. Garoff, "X-ray and neutron scattering from rough surfaces," Phys. Rev. B 38,2297-2312 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited