OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010

Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles

Urcan Guler and Rasit Turan  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17322-17338 (2010)
http://dx.doi.org/10.1364/OE.18.017322


View Full Text Article

Enhanced HTML    Acrobat PDF (2787 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The resonance behavior of localized surface plasmons in silver and gold nanoparticles was studied in the visible and near-infrared regions of the electromagnetic spectrum. Arrays of nano-sized gold (Au) and silver (Ag) particles with different properties were produced with electron-beam lithography technique over glass substrates. The effect of the particle size, shape variations, period, thickness, metal type, substrate type and sulfidation were studied via transmission and reflectance measurements. The results are compared with the theoretical calculations based on the DDA simulations performed by software developed in this study. We propose a new intensity modulation technique based on localized surface plasmons in nanoparticles with asymmetric shapes.

© 2010 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(290.2200) Scattering : Extinction
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 5, 2010
Revised Manuscript: July 8, 2010
Manuscript Accepted: July 14, 2010
Published: July 30, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Urcan Guler and Rasit Turan, "Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles," Opt. Express 18, 17322-17338 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-16-17322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 147, 145–181 (1857). [CrossRef]
  2. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A 203(359-371), 385–420 (1904). [CrossRef]
  3. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25(3), 377–445 (1908). [CrossRef]
  4. X. Yu-lin, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34(21), 4573–4588 (1995). [CrossRef]
  5. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  6. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  7. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  8. J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008). [CrossRef] [PubMed]
  9. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  10. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007). [CrossRef]
  11. L. Novotny, and B. Hecht, Principles of nano optics (Cambridge University Press, New York, 2006).
  12. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21(15), 1099–1101 (1996). [CrossRef] [PubMed]
  13. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998). [CrossRef]
  14. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005). [CrossRef]
  15. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]
  16. K. Nakayama, K. Tanabe, and H. Atwater, “Surface plasmon enhanced photocurrent in thin GaAs solar cells,” Proc. SPIE 7047, 704708 (2008). [CrossRef]
  17. A. K. Pradhan, R. B. Konda, H. Mustafa, R. Mundle, O. Bamiduro, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon resonance in CdSe semiconductor coated with gold nanoparticles,” Opt. Express 16(9), 6202–6208 (2008). [CrossRef] [PubMed]
  18. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008). [CrossRef]
  19. K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006). [CrossRef]
  20. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  21. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008). [CrossRef]
  22. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006). [CrossRef]
  23. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007). [CrossRef]
  24. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005). [CrossRef] [PubMed]
  25. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006). [CrossRef]
  26. M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, and S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005). [CrossRef]
  27. T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006). [CrossRef]
  28. K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61(23-24), 4573–4575 (2007). [CrossRef]
  29. H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-consistent determination of plasmonic resonances in ternary nanocomposites,” Phys. Rev. B 75(4), 045439 (2007). [CrossRef]
  30. J. P. Kottman, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” N. J. Phys. 2, 27 (2000). [CrossRef]
  31. S. Zou and G. C. Schatz, “Generating narrow plasmon resonances from silver nanoparticle arrays: influence of array pattern and particle spacing,” Proc. SPIE 5513, 22–29 (2004). [CrossRef]
  32. B. T. Draine, and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.0,” http://arXiv.org/abs/0809.0337 (2008).
  33. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007). [CrossRef]
  34. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994). [CrossRef]
  35. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008). [CrossRef] [PubMed]
  36. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003). [CrossRef]
  37. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003). [CrossRef]
  38. A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” N. J. Chem. 30(8), 1121–1132 (2006). [CrossRef]
  39. S. J. Norton and T. V. Dinh, “Spectral bounds on plasmon resonances for Ag and Au prolate and oblate nanospheroids,” J. Nanophoton. 2(1), 029501 (2008). [CrossRef]
  40. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63, 381–384 (1996).
  41. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005). [CrossRef]
  42. M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008). [CrossRef] [PubMed]
  43. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  44. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and T. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  45. J. D. Jackson, Classical Electrodynamics (John Wiley 1998), 3rd ed.
  46. M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80(7), 915–921 (2005). [CrossRef]
  47. W. Cao and H. E. Elsayed-Ali, “Stability of Ag nanoparticles fabricated by electron beam lithography,” Mater. Lett. 63(26), 2263–2266 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited