OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010

Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy

Etienne Shaffer, Pierre Marquet, and Christian Depeursinge  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17392-17403 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the past decade, quantitative phase imaging gave a new dimension to optical microscopy, and the recent extension of digital holography techniques to nonlinear microscopy appears very promising, for the phase of nonlinear signal provides additional information, inaccessible to incoherent imaging schemes. In this work, we show that the position of second harmonic generation (SHG) emitters can be determined from their respective phase, at the nanometer scale, with single-shot off-axis digital holography, making possible real-time nanometric 3D-tracking of SHG emitters such as nanoparticles.

© 2010 Optical Society of America

OCIS Codes
(090.1995) Holography : Digital holography
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: April 28, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: July 21, 2010
Published: July 30, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Etienne Shaffer, Pierre Marquet, and Christian Depeursinge, "Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy," Opt. Express 18, 17392-17403 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. T. Thurn, E. M. B. Brown, A. Wu, S. Vogt, B. Lai, J. Maser, T. Paunesku, and G. E. Woloschak, “Nanoparticles for applications in cellular imaging,” Nanoscale Res. Lett. 2, 430–441 (2007). [CrossRef] [PubMed]
  2. H. W. Gu, K. M. Xu, C. J. Xu, and B. Xu, “Biofunctional magnetic nanoparticles for protein separation and pathogen detection,” Chem. Commun. 37, 941–949 (2006). [CrossRef]
  3. K. Kim, and J. P. Fisher, “Nanoparticle technology in bone tissue engineering,” J. Drug Target. 15, 241–252 (2007). [CrossRef]
  4. J. Panyam, and V. Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55, 329–347 (2003). [CrossRef]
  5. W. H. De Jong, and P. J. A. Borm, “Drug delivery and nanoparticles: Applications and hazards,” Internat. J. Nanomed. 3, 133–149 (2008). [CrossRef]
  6. . E. S. Day, J. G. Morton, and J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomechan. Engin.-transactions of the Asme 131, 074001 (2009). [CrossRef]
  7. G. T. Hermanson, Bioconjugate Techniques (Academic Press, New York, NY, USA, 1996).
  8. J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking Kinesin-driven movements with nanometer-scale precision,” Nature 331, 450–453 (1988). [CrossRef] [PubMed]
  9. L. N. Bohs, B. J. Geiman, M. E. Anderson, S. C. Gebhart, and G. E. Trahey, “Speckle tracking for multidimensional flow estimation,” Ultrasonics 38, 369–375 (2000). [CrossRef] [PubMed]
  10. R. N. Ghosh, and W. W. Webb, “Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor,” Biophys. J. 66, 1301–1318 (1994). [CrossRef] [PubMed]
  11. C. M. Anderson, G. N. Georgiou, I. E. G. Morrison, G. V. W. Stevenson, and R. J. Cherry, “Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device - low-density lipoprotein and influenza-virus receptor mobility at 4 degrees c,” J. Cell Sci. 101, 415–425 (1992).
  12. G. J. Schutz, H. Schindler, and T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion,” Biophys. J. 73, 1073–1080 (1997). [CrossRef] [PubMed]
  13. S. S. Rogers, T. A. Waigh, X. B. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight,” Phys. Biol. 4, 220–227 (2007). [CrossRef]
  14. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001). [CrossRef] [PubMed]
  15. M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Opt. Lett. 33, 500–502 (2008). [CrossRef] [PubMed]
  16. S. H. Lee, and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007). [CrossRef] [PubMed]
  17. S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007). [CrossRef] [PubMed]
  18. C.-L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009). [CrossRef] [PubMed]
  19. E. Shaffer, N. Pavillon, J. Kühn, and C. Depeursinge, “Second harmonic and fundamental wavelength digital holographic microscopy,” in “OSA Technical Digest (CD),” (Optical Society of America, 2009), pp. JTuA3.
  20. U. Schnars, and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  21. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  22. E. Shaffer, N. Pavillon, J. Kühn, and C. Depeursinge, “Digital holographic microscopy investigation of second harmonic generated at a glass/air interface,” Opt. Lett. 34, 2450–2452 (2009). [CrossRef] [PubMed]
  23. Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104, 207402 (2010). [CrossRef] [PubMed]
  24. K. Konig, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett. 22, 135–136 (1997). [CrossRef] [PubMed]
  25. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited