OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010

Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system

Michael Esseling, Frank Holtmann, Mike Woerdemann, and Cornelia Denz  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 17404-17411 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3430 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dielectrophoretic forces originating from highly modulated electric fields can be used to trap particles on surfaces. An all-optical way to induce such fields is the use of a photorefractive material, where the fields that modulate the refractive index are present at the surface. We present a method for two-dimensional particle alignment on an optically structured photorefractive lithium niobate crystal. The structuring is done using an amplitude-modulating spatial light modulator and laser illumination. We demonstrate trapping of uncharged graphite particles in periodic and arbitrary patterns and provide a discussion of the limitations and the necessary boundary conditions for maximum trapping efficiency. The photorefractive crystal is utilized as bottom part of a PDMS channel in order to demonstrate two-dimensional dielectrophoretic trapping in a microfluidic system.

© 2010 OSA

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.5330) Nonlinear optics : Photorefractive optics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: May 4, 2010
Revised Manuscript: May 26, 2010
Manuscript Accepted: May 27, 2010
Published: July 30, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Michael Esseling, Frank Holtmann, Mike Woerdemann, and Cornelia Denz, "Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system," Opt. Express 18, 17404-17411 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006). [CrossRef] [PubMed]
  2. C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004). [CrossRef]
  3. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008). [CrossRef] [PubMed]
  4. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  5. D. M. Pai and B. E. Springett, “Physics of Electrophotography,” Rev. Mod. Phys. 65(1), 163–211 (1993). [CrossRef]
  6. N. Ranjan, M. Mertig, G. Cuniberti, and W. Pompe, “Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments,” Langmuir 26(1), 552–559 (2010). [CrossRef]
  7. H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, and T. C. Tan, “Large-area travelling wave dielectrophoresis particle separator,” J. Micromech. Microeng. 7(2), 65–70 (1997). [CrossRef]
  8. H. Morgan, M. P. Hughes, and N. G. Green, “Separation of submicron bioparticles by dielectrophoresis,” Biophys. J. 77(1), 516–525 (1999). [CrossRef] [PubMed]
  9. P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002). [CrossRef] [PubMed]
  10. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  11. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008). [CrossRef]
  12. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005). [CrossRef] [PubMed]
  13. V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, “Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems,” Opt. Mater. 18(1), 191–194 (2001). [CrossRef]
  14. V. V. Krishnamachari, O. Grothe, H. Deitmar, and C. Denz, “Novelty filtering with a photorefractive lithium-niobate crystal,” Appl. Phys. Lett. 87(7), 071105 (2005). [CrossRef]
  15. M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009). [CrossRef]
  16. P. Yeh, Introduction to Photorefractive Nonlinear Optics, (Wiley Interscience, 1993).
  17. H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007). [CrossRef]
  18. K. H. Bhatt and O. D. Velev, “Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires,” Langmuir 20(2), 467–476 (2004). [CrossRef]
  19. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998). [CrossRef] [PubMed]
  20. H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29(8), 1182–1188 (1958). [CrossRef]
  21. T. B. Jones, Electrokinetics of Particles, (Cambridge University Press, 1995).
  22. S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008). [CrossRef]
  23. P. Rose, B. Terhalle, J. Imbrock, and C. Denz, “Optically induced photonic superlattices by holographic multiplexing,” J. Phys. D Appl. Phys. 41(22), 224004 (2008). [CrossRef]
  24. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966). [CrossRef]
  25. B. Sturman, and V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials, (Gordon & Breach Science Publishers, 1992).
  26. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  27. P. Günter, and J.-P. Huignard, Photorefractive Materials and their Applications 1: basic effects, (Springer, 2006).
  28. P. M. Kruglyakov, Hydrophile - Lipophile Balance of Surfactants and Solid Particles, (Elsevier, 2000).
  29. N. Markarian, M. Yeksel, B. Khusid, K. Farmer, and A. Acrivos, “Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis,” Appl. Phys. Lett. 82(26), 4839–4841 (2003). [CrossRef]
  30. X. Z. Zhang, J. Q. Wang, B. Q. Tang, X. H. Tan, R. A. Rupp, L. T. Pan, Y. F. Kong, Q. Sun, and J. J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009). [CrossRef] [PubMed]
  31. P. Yeh, “Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research,” Appl. Opt. 26(4), 602–604 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited