OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 3 — Feb. 10, 2010

Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye

C. Leroux and C. Dainty  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 1197-1206 (2010)
http://dx.doi.org/10.1364/OE.18.001197


View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Most Shack-Hartmann based aberrometers use infrared light, for the comfort of the patients. A large amount of the light that is scattered from the retinal layers is recorded by the detector as background, from which it is not trivial to estimate the centroid of the Shack-Hartmann spot. For a centroiding algorithm, background light can lead to a systematic bias of the centroid positions towards the centre of the software window. We implement a matched filter algorithm for the estimation of the centroid positions of the Shack-Hartmann spots recorded by our aberrometer. We briefly present the performance of our algorithm, and recall the well-known robustness of the matched filter algorithm to background light. Using data collected on 5 human eyes, we parameterise a simple and fast centroiding algorithm and reduce the difference between the two algorithms down to a mean residual wavefront of 0.02 μm rms.

© 2010 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(330.7325) Vision, color, and visual optics : Visual optics, metrology
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Adaptive Optics

History
Original Manuscript: November 17, 2009
Revised Manuscript: December 15, 2009
Manuscript Accepted: December 23, 2009
Published: January 8, 2010

Virtual Issues
Vol. 5, Iss. 3 Virtual Journal for Biomedical Optics

Citation
C. Leroux and C. Dainty, "Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye," Opt. Express 18, 1197-1206 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-2-1197


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Bara, "Measuring eye aberrations with Hartmann-Shack wave-front sensors: Should the irradiance distribution across the eye pupil be taken into account?" J. Opt. Soc. Am. A 20,2237-2245 (2003). [CrossRef]
  2. L. Diaz-Santana, G. Walker, and S. Bara, "Sampling geometries for ocular aberrometry: A model for evaluation of performance," J. Opt. Soc. Am. A 13,8801-8818 (2005).
  3. S. Bara, "Characteristic functions of Hartmann-Shack wavefront sensors and laser-ray-tracing aberrometers," J. Opt. Soc. Am. A 24,3700-3707 (2007). [CrossRef]
  4. S. Bara, P. Prado, J. Arines, and J. Ares, "Estimation-induced correlations of the Zernike coefficients of the eye aberration," Opt. Lett. 31,2646-2648 (2006). [CrossRef] [PubMed]
  5. L. Llorente, S. Marcos, C. Dorronsoro, and S. Burns, "Effect of sampling on real ocular aberration measurements," J. Opt. Soc. Am. A 24,2783-2796 (2007). [CrossRef]
  6. R. Cannon, "Global wave-front reconstruction using Shack-Hartmann sensors," J. Opt. Soc. Am. A 12,2031-2039 (1995). [CrossRef]
  7. H. Barrett, C. Dainty, and D. Lara, "Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions," J. Opt. Soc. Am. A 24,391-414 (2007). [CrossRef]
  8. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley-Interscience, 2003).
  9. G. Rousset, "Wave-front sensors," in Adaptive Optics in Astronomy, F. Roddier eds. (Cambridge University Press, 1999). [CrossRef]
  10. J. Porter, H. Queener, J. Lin, K. Thorn and A. Awwal, eds., Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, 2006). [CrossRef]
  11. L. Diaz-Santana Haro, Wavefront Sensing in the Human Eye with a Shack-Hartmann Sensor (PhD thesis, 2000).
  12. P. Prieto, F. Vargas-Martn, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17,1388-1398 (2000). [CrossRef]
  13. T. Fusco, M. Nicolle, G. Rousset, V. Michau, J.-L. Beuzit, and D. Mouillet, "Optimisation of Shack-Hartmann based wavefront sensor for XAO system," in Advancements in Adaptive Optics, Proc. SPIE 5490,1155-1166 (2004). [CrossRef]
  14. M. Nicolle, T. Fusco, G. Rousset, and V. Michau, "Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics," Opt. Lett. 29,2743-2745 (2004). [CrossRef] [PubMed]
  15. K. Baker and M. Moallem, "Iteratively weighted centroiding for Shack-Hartmann wave-front sensors," Opt. Express 15,5147-5159 (2007). [CrossRef] [PubMed]
  16. J. Ares and J. Arines, "Effective noise in thresholded intensity distribution: influence on centroid statistics," Opt. Lett. 26,1831-1833 (2001). [CrossRef]
  17. J. Arines and J. Ares, "Minimum variance centroid thresholding," Opt. Lett. 27,497-499 (2002). [CrossRef]
  18. J. Ares and J. Arines, "Influence of thresholding on centroid statistics: full analytical description," Appl. Opt. 43,5796-5805 (2004). [CrossRef] [PubMed]
  19. B. Welsh, B. Ellerbroek, M. Roggemann, and T. Pennington, "Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor," Appl. Opt. 34,4186-4195 (1995). [CrossRef] [PubMed]
  20. R. Irwan and R. Lane, "Analysis of optimal centroid estimation applied to Shack-Hartmann sensing," Appl. Opt. 38,6737-6743 (1999). [CrossRef]
  21. M. van Dam and R. Lane, "Wave-front slope estimation," J. Opt. Soc. Am. A 17,1319-1324 (2000). [CrossRef]
  22. J. Arines and J. Ares, "Significance of thresholding processing in centroid based gradient wavefront sensors: effective modulation of the wavefront derivative," Opt. Commun. 237,257-266 (2004). [CrossRef]
  23. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau and G. Rousset, "Comparison of centroid computation algorithms in a Shack-Hartmann sensor," Mon. Not. R. Astron. Soc. 371,323-336 (2006). [CrossRef]
  24. T.R. Rimmele and R.R. Radick, "Solar Adaptive Optics at the National Solar Observatory," Proc. SPIE 3353,72-81 (1998). [CrossRef]
  25. J. Ruggiu, C. Solomon, and G. Loos, "Gram-Charlier matched filter for Shack-Hartmann sensing at low light levels," Opt. Lett. 23,235-237 (1998). [CrossRef]
  26. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vis. Sci. 80,26-35 (2003). [CrossRef] [PubMed]
  27. L. Poyneer, "Scene-based Shack-Hartmann Wave-front sensing: analysis and simulation," Appl. Opt. 42,5807-5815 (2003). [CrossRef] [PubMed]
  28. H. Hofer, P. Artal, B. Singer, J. Aragn, and D. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18,497-506 (2001). [CrossRef]
  29. P. Knutsson, M. Owner-Petersen, and C. Dainty, "Extended object wavefront sensing based on the correlation spectrum phase," Opt. Express 13,9527-9536 (2005). [CrossRef] [PubMed]
  30. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).
  31. K. Winick, "Cramér-Rao lower bounds on the performance of charge-coupled-device optical position estimators," J. Opt. Soc. Am. A 3,1809-1815 (1986). [CrossRef]
  32. B. Saleh, "Estimation of the location of an optical object with photodetectors limited by quantum noise," Appl. Opt. 13,1824-1827 (1974). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited