OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 3 — Feb. 10, 2010

Adaptive optics retinal scanner for one-micrometer light source

Kazuhiro Kurokawa, Daiki Tamada, Shuichi Makita, and Yoshiaki Yasuno  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1406-1418 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1720 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed an adaptive optics (AO) retinal scanner by using a light source with a center wavelength of 1-μm. In a recent study on optical coherence tomography (OCT), it was proved that 1-μm light provided higher image contrast of deep region of the eye than 840-nm light. Further, high lateral resolution retinal images were obtained with AO. In this study, we performed measurements on two normal subjects in the AO-SLO mode and analyzed its performance toward developing the AO-OCT. With AO correction, we found that the residual RMS wavefront error of ocular aberration was less than 0.1 μm. We also found that the AO retinal scanner in the AO-SLO mode enabled enhanced observation of photoreceptor mosaic.

© 2010 Optical Society of America

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(180.5810) Microscopy : Scanning microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Adaptive Optics

Original Manuscript: November 2, 2009
Revised Manuscript: January 5, 2010
Manuscript Accepted: January 7, 2010
Published: January 12, 2010

Virtual Issues
Vol. 5, Iss. 3 Virtual Journal for Biomedical Optics

Kazuhiro Kurokawa, Daiki Tamada, Shuichi Makita, and Yoshiaki Yasuno, "Adaptive optics retinal scanner for one-micrometer light source," Opt. Express 18, 1406-1418 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  2. A. Roorda, F. Romero-Borja, W. Donnelly, III, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002). [PubMed]
  3. S. A. Burns, R. Tumber, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007). [CrossRef]
  4. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Oliver, "High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirror," J. Opt. Soc. Am. A 24, 1305-1312 (2007). [CrossRef]
  5. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008). [CrossRef]
  6. R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987). [CrossRef] [PubMed]
  7. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006). [CrossRef] [PubMed]
  8. B. Hermann, E. J. Fernandez, A. Unterhuder, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, " Adaptiveoptics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  9. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008). [CrossRef] [PubMed]
  10. E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008). [CrossRef] [PubMed]
  11. B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009). [CrossRef] [PubMed]
  12. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003). [CrossRef] [PubMed]
  13. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005). [CrossRef] [PubMed]
  14. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). [CrossRef] [PubMed]
  15. B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007). [CrossRef] [PubMed]
  16. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008). [CrossRef] [PubMed]
  17. D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "Invivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07-1553 (2008). [CrossRef] [PubMed]
  18. Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009). [CrossRef]
  19. B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009). [CrossRef]
  20. F. C. Delori and K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1077 (1989). [CrossRef]
  21. M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995). [CrossRef] [PubMed]
  22. A. E. Elsner, S. A. Burns, J. J. Weiter and F. C. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996). [CrossRef] [PubMed]
  23. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-textmum wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  24. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990). [CrossRef]
  25. E. J. Fernandez, A. Unterhuber, P. Prietro, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005). [CrossRef] [PubMed]
  26. D. A. Atchison and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-37 (2005). [CrossRef]
  27. E. J. Fernandez, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006). [CrossRef] [PubMed]
  28. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, "Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope," Opt. Express 14, 12230-12242 (2006). [CrossRef] [PubMed]
  29. E. J. Fernandez and P. Artal, "Ocular aberrations up to the infrared range: from 632.8 to 1070 nm," Opt. Express 16, 21199-21208 (2008). [CrossRef] [PubMed]
  30. A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002). [CrossRef]
  31. A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003). [CrossRef] [PubMed]
  32. B. Vohnsen, I. Iglesias, and P. Artal, "Guided light and diffraction model of human-eye photoreceptors," J. Opt. Soc. Am. A 22, 2318-2328 (2005). [CrossRef]
  33. S. S. Choi, N. Doble, J. Lin, J. Christou, and D. R. Williams, "Effect of wavelength on in vivo images of the human cone mosaic," J. Opt. Soc. Am. A 22, 2598-2605 (2005). [CrossRef]
  34. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007). [CrossRef] [PubMed]
  35. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008). [CrossRef] [PubMed]
  36. D. T. Miller, L. N. Thibos, and X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005). [CrossRef] [PubMed]
  37. American National Standard Institute, American National Standard f or the Sa f eUse o f Lasers ANSI Z 136.1−2000 (American National Standards Institute, New York, 2000).
  38. F. C. Delori, R. H. Webb, and D. H. Sliney, "Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices," J. Opt. Soc. Am. A 24, 1250-1265 (2007). [CrossRef]
  39. L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005). [CrossRef]
  40. A. Sawada, A. Tomidokoro, M. Araie, A. Iwase, T. Yamamoto, and Tajimi study Group, "Refractive errors in an elderly Japanese population: the Tajimi study," Ophthalmology 115 (2), 363-370 (2008). [CrossRef]
  41. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE-International Society for Optical Engineering, 2004). [CrossRef]
  42. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006). [CrossRef] [PubMed]
  43. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, "Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors," J. Opt. Soc. Am. A 24, 1250-1265 (2007).
  44. R. H. Webb and G. W. Hughes, "Scanning Laser Ophthalmoscope," IEEE Trans. Biomed. Eng. 28(7), 488-492 (1981). [CrossRef] [PubMed]
  45. R. H. Webb, "Optics for laser rasters," Appl. Opt. 23, 3680-3683 (1984). [CrossRef] [PubMed]
  46. Webb, R. H. , G. W. Hughes, and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987). [CrossRef] [PubMed]
  47. A. E. Elsner, S. A. Burns, G. W. Hughes, and R. H. Webb, "Reflectometry with a Scanning Laser Ophthalmoscope," Appl. Opt. 31, 3697-3710 (1992). [CrossRef] [PubMed]
  48. H. Foroosh, J. B. Zerubia, and M. Berthod, "Extension of phase correlation to subpixel registration," IEEE Trans Image Process 11(3), 188-200 (2002). [CrossRef]
  49. J. C. Wyant and K. Creath, "Basic wavefront aberration theory for optical metrology," in Applied Optics and Optical Engineering, Vol. XI, R. R. Shannon and J. C. Wyant, eds. (Academic Press, 1992), 1-53.
  50. T. Wilson and A. R. Carlini, "Size of the detector in confocal imaging systems," Opt. Lett. 12, 227-229 (1987). [CrossRef] [PubMed]
  51. R. H. Webb, "Confocal optical microscopy," Reports on Progress in Physics 59(3), 427-471 (1996). [CrossRef]
  52. Y. Zhang and A. Roorda, "Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 11, 014002(1)-014002(5) (2006).
  53. C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987). [CrossRef] [PubMed]
  54. K. Kurokawa, K. Sasaki, S. Makita and Y. Yasuno, "Adaptive optics spectral domain optical coherence tomography with one-micrometer light source," Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XIV, Proc. SPIE, in press.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1457 KB)     
» Media 2: MOV (1746 KB)     
» Media 3: AVI (11833 KB)     
» Media 4: AVI (14162 KB)     
» Media 5: MOV (490 KB)     
» Media 6: MOV (1414 KB)     
» Media 7: AVI (4126 KB)     
» Media 8: AVI (11070 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited