OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 3 — Feb. 10, 2010

Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy

Suhui Deng, Li Liu, Ya Cheng, Ruxin Li, and Zhizhan Xu  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1657-1666 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (721 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Effects of primary aberrations including spherical aberration, coma and astigmatism on the three fluorescence depletion patterns mainly used in stimulated emission of depletion (STED) microscopy are investigated by using vectorial integral. The three depletion patterns are created by inserting a vortex phase plate, a central half-wavelength plate or a semi-circular half-wavelength mask within Gaussian beam respectively. Attention is given to the modification of the shape, peak intensity, the central intensity of the dark hole and the hole size of these depletion patterns in the presence of primary aberrations.

© 2010 OSA

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(180.0180) Microscopy : Microscopy
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: November 12, 2009
Revised Manuscript: December 29, 2009
Manuscript Accepted: December 30, 2009
Published: January 14, 2010

Virtual Issues
Vol. 5, Iss. 3 Virtual Journal for Biomedical Optics

Suhui Deng, Li Liu, Ya Cheng, Ruxin Li, and Zhizhan Xu, "Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy," Opt. Express 18, 1657-1666 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  2. S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  3. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009). [CrossRef] [PubMed]
  4. T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(6), 066613 (2001). [CrossRef] [PubMed]
  5. T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum. 75(12), 5131–5135 (2004). [CrossRef]
  6. J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007). [CrossRef] [PubMed]
  7. K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, “STED microscopy resolves nanoparticle assemblies,” N. J. Phys. 8(6), 106 (2006). [CrossRef]
  8. P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004). [CrossRef] [PubMed]
  9. D. P. Biss and T. G. Brown, “Primary aberrations in focused radially polarized vortex beams,” Opt. Express 12(3), 384–393 (2004). [CrossRef] [PubMed]
  10. B. R. Boruah and M. A. A. Neil, “Susceptibility to and correction of azimuthal aberrations in singular light beams,” Opt. Express 14(22), 10377–10385 (2006). [CrossRef] [PubMed]
  11. B. R. Boruah and M. A. A. Neil, “Far field computation of an arbitrarily polarized beam using fast Fourier thrnsforms,” Opt. Commun. 282(24), 4660–4667 (2009). [CrossRef]
  12. M. Born, and E. Wolf, Principles of Optics, (Cambridge University Press, Cambridge, UK, 1999).
  13. R. Kant, “An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations I. Spherical aberration, curvature of field, and distortion,” J. Mod. Opt. 40(11), 2293–2310 (1993). [CrossRef]
  14. R. Kant, “An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: Astigmatism and coma,” J. Mod. Opt. 42(2), 299–320 (1995). [CrossRef]
  15. R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of primary spherical aberration on high-numericalaperture focusing of a Laguerre-Gaussian beam,” J. Opt. Soc. Am. A 25(6), 1307–1318 (2008). [CrossRef]
  16. R. K. Singh, P. Senthilkumaran, and K. Singh, “Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma,” Opt. Commun. 281(5), 923–934 (2008). [CrossRef]
  17. R. K. Singh, P. Senthilkumaran, and K. Singh, “Focusing of linearly-, and circularly polarized Gaussian background vortex beams by a high numerical aperture system afflicted with third-order astigmatism,” Opt. Commun. 281(24), 5939–5948 (2008). [CrossRef]
  18. S. H. Deng, L. Liu, Y. Cheng, R. X. Li, and Z. Z. Xu, “Investigation of the influence of the aberration induced by a plane interface on STED microscopy,” Opt. Express 17(3), 1714–1725 (2009). [CrossRef] [PubMed]
  19. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations,” Appl. Opt. 45(15), 3425–3429 (2006). [CrossRef] [PubMed]
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  21. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [CrossRef] [PubMed]
  22. P. Dedecker, B. Muls, J. Hofkens, J. Enderlein, and J. Hotta, “Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams,” Opt. Express 15(6), 3372–3383 (2007). [CrossRef] [PubMed]
  23. N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272(1), 263–268 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited