OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle

Chia-Lung Hsieh, Ye Pu, Rachel Grange, Grégoire Laporte, and Demetri Psaltis  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 20723-20731 (2010)
http://dx.doi.org/10.1364/OE.18.020723


View Full Text Article

Enhanced HTML    Acrobat PDF (1533 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate imaging through a turbid layer by using digital phase conjugation of the second harmonic field radiated from a beacon nanoparticle. We show that the phase-conjugated focus can be displaced from its initial position by illuminating the same region of the turbid layer with an angular offset. An image is obtained by scanning the phase-conjugated focus through the turbid layer in a region around the nanoparticle. We obtain a clear image of the target by measuring the light transmitted through it when scanning the focused beam.

© 2010 OSA

OCIS Codes
(070.5040) Fourier optics and signal processing : Phase conjugation
(160.4330) Materials : Nonlinear optical materials
(180.5810) Microscopy : Scanning microscopy
(110.0113) Imaging systems : Imaging through turbid media
(090.1995) Holography : Digital holography
(160.4236) Materials : Nanomaterials

ToC Category:
Imaging Systems

History
Original Manuscript: July 26, 2010
Revised Manuscript: September 5, 2010
Manuscript Accepted: September 8, 2010
Published: September 15, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Chia-Lung Hsieh, Ye Pu, Rachel Grange, Grégoire Laporte, and Demetri Psaltis, "Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle," Opt. Express 18, 20723-20731 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-20-20723


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8(12), 311–313 (1966). [CrossRef]
  2. E. N. Leith and J. Upatniek, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56(4), 523 (1966). [CrossRef]
  3. H. Kogelnik and K. S. Pennington, “Holographic imaging through a random medium,” J. Opt. Soc. Am. 58(2), 273–274 (1968). [CrossRef]
  4. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  5. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008). [CrossRef] [PubMed]
  6. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat Photonics 2(2), 110–115 (2008). [CrossRef] [PubMed]
  7. M. Cui, E. J. McDowell, and C. H. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010). [CrossRef] [PubMed]
  8. M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010). [CrossRef] [PubMed]
  9. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010). [CrossRef] [PubMed]
  10. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010). [CrossRef]
  11. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010). [CrossRef]
  12. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967). [CrossRef]
  13. F. Mok, J. Diep, H. K. Liu, and D. Psaltis, “Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator,” Opt. Lett. 11(11), 748–750 (1986). [CrossRef] [PubMed]
  14. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009). [CrossRef] [PubMed]
  15. J. Extermann, L. Bonacina, E. Cuña, C. Kasparian, Y. Mugnier, T. Feurer, and J.-P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17(17), 15342–15349 (2009). [CrossRef] [PubMed]
  16. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials 31(8), 2272–2277 (2010). [CrossRef]
  17. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010). [CrossRef] [PubMed]
  18. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988). [CrossRef] [PubMed]
  19. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008). [CrossRef] [PubMed]
  20. E. Shaffer, N. Pavillon, J. Kühn, and C. Depeursinge, “Digital holographic microscopy investigation of second harmonic generated at a glass/air interface,” Opt. Lett. 34(16), 2450–2452 (2009). [CrossRef] [PubMed]
  21. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18(10), 9840–9851 (2010). [CrossRef] [PubMed]
  22. E. Shaffer, P. Marquet, and C. Depeursinge, “Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy,” Opt. Express 18(16), 17392–17403 (2010). [CrossRef] [PubMed]
  23. M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5(24), 2835–2840 (2009). [CrossRef] [PubMed]
  24. Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010). [CrossRef] [PubMed]
  25. P. R. Seem, J. D. R. Buchanan, and R. P. Cowburn, “Impact of surface roughness on laser surface authentication signatures under linear and rotational displacements,” Opt. Lett. 34(20), 3175–3177 (2009). [CrossRef] [PubMed]
  26. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited