OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and Cid B. de Araújo  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21636-21644 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (946 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear response of silica - gold nanoshells (SGNs) in chloroform was studied using laser pulses of 65 fs at 1560 nm. The experiments were performed using the thermally managed Z - scan technique that allows measurements of the electronic contribution for the nonlinear response, free from thermal influence. The results were analyzed using an analytical approach based on the quasi - static approximation that allowed extraction of the nonlinear susceptibility of a SGN from the data. High third - order susceptibility, χsh (3) = - 1.5 x 10−11 m2/V2, approximately four orders of magnitude larger than for gold nanospheres in the visible, and large fifth - order susceptibility, χsh (5) = - 1.4 x 10−24 m4/V4, were obtained. The present results offers new perspectives for nonlinear plasmonics in the near - infrared.

© 2010 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

Original Manuscript: July 19, 2010
Revised Manuscript: September 15, 2010
Manuscript Accepted: September 15, 2010
Published: September 28, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and Cid B. de Araújo, "High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm," Opt. Express 18, 21636-21644 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999). [CrossRef]
  2. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005). [CrossRef] [PubMed]
  3. M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett. 7(12), 3759–3765 (2007) (and references therein). [CrossRef] [PubMed]
  4. D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, “Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH,” Nano Lett. 9(2), 666–671 (2009). [CrossRef] [PubMed]
  5. J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008). [CrossRef]
  6. J. T. Seo, Q. Yang, W. J. Kim, J. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett. 34(3), 307–309 (2009). [CrossRef] [PubMed]
  7. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010). [CrossRef] [PubMed]
  8. T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002). [CrossRef]
  9. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968). [CrossRef]
  10. C. A. R. Costa, C. A. P. Leite, and F. Galembeck, “Size dependence of Stöber silica nanoparticle microchemistry,” J. Phys. Chem. B 107(20), 4747–4755 (2003). [CrossRef]
  11. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982). [CrossRef]
  12. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. 111(10), 4729–4735 (1999). [CrossRef]
  13. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13(20), 7976–7981 (2005). [CrossRef] [PubMed]
  14. L. A. Gómez, C. B. de Araújo, R. Putvinskis, S. H. Messaddeq, Y. Ledemi, and Y. Messaddeq, “Nonlinear optical properties of antimony–germanium–sulfur glasses at 1560 nm,” Appl. Phys. B 94(3), 499–502 (2009). [CrossRef]
  15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  16. E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24(12), 2948–2956 (2007). [CrossRef]
  17. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992). [CrossRef]
  18. See for example: J. D. Jackson, “Classical electrodynamics” (Wiley, New York, 1998).
  19. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6(4), 787–796 (1989). [CrossRef]
  20. Corning product information data sheet for standard silica ( http://www.corning.com/docs/specialtymaterials/pisheets/H0607_hpfs_Standard_ProductSheet.pdf ).
  21. A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003). [CrossRef]
  22. R. W. Boyd, “Nonlinear optics” (Academic, San Diego, 2003).
  23. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, “Origin of third-order optical nonlinearity in Au:SiO(2) composite films on femtosecond and picosecond time scales,” Opt. Lett. 23(5), 388–390 (1998). [CrossRef]
  24. N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971). [CrossRef]
  25. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3(12), 1647–1655 (1986). [CrossRef]
  26. B. B. Baizakov, A. Bouketir, A. Messikh, and B. A. Umarov, “Modulational instability in two-component discrete media with cubic-quintic nonlinearity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046605 (2009). [CrossRef] [PubMed]
  27. M. Lewenstein and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” N. J. Phys. 11, 113014 (2009). [CrossRef]
  28. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Spatiotemporal solitons in the Ginzburg Landau model with a two-dimensional transverse grating,” Phys. Rev. A 81(2), 025801 (2010). [CrossRef]
  29. G. I. Stegeman, in “Nonlinear optics of organic molecules and polymers,” p.799, edited by H. S. Nalva and S. Miyata (CRC, Boca Raton, Fl., 1997).
  30. K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett. 35(10), 1560–1562 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited