OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Design and fabrication of Poly(dimethylsiloxane) arrayed waveguide grating

Jack Sheng Kee, Daniel Puiu Poenar, Pavel Neužil, Levent Yobaş, and Yu Chen  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21732-21742 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1166 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed, fabricated and characterized poly(dimethylsiloxane) (PDMS) arrayed waveguide grating (AWG) with four-channel output for operation in the visible light wavelength range. The PDMS AWG was realized based on the single-mode PDMS rib waveguide. The device was designed for 1 nm channel spacing with the wavelength ranging from 639 to 644 nm. The measured insertion loss is 11.4 dB at the peak transmission spectrum and the adjacent crosstalk is less than −16 dB. The AWG device occupies an area of 7.5 × 15 mm2. PDMS AWG has the potential for integration with microfluidics in a monolithic PDMS lab-on-a-chip device for visible light spectroscopy applications.

© 2010 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7390) Optical devices : Waveguides, planar
(080.1238) Geometric optics : Array waveguide devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: April 30, 2010
Revised Manuscript: July 18, 2010
Manuscript Accepted: July 19, 2010
Published: September 29, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Jack Sheng Kee, Daniel Puiu Poenar, Pavel Neužil, Levent Yobaş, and Yu Chen, "Design and fabrication of Poly(dimethylsiloxane) arrayed waveguide grating," Opt. Express 18, 21732-21742 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24(7), 385–386 (1988). [CrossRef]
  2. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990). [CrossRef]
  3. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991). [CrossRef]
  4. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002). [CrossRef]
  5. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D. X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007). [CrossRef] [PubMed]
  6. K. Okamoto, K. Moriwaki, and S. Suzuki, “Fabrication of 64 × 64 arrayed waveguide grating multiplexer on Silicon,” Electron. Lett. 31(3), 184–185 (1995). [CrossRef]
  7. M. Diemeer, L. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32(12), 1132–1133 (1996). [CrossRef]
  8. K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011–044018 (2008). [CrossRef]
  9. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002). [CrossRef]
  10. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003). [CrossRef] [PubMed]
  11. E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3(3), 42N–52N (2003).
  12. J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17(14), 11739–11746 (2009). [CrossRef] [PubMed]
  13. M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996). [CrossRef]
  14. K. Okamoto, Fundamental of Optical Waveguides, (Academic Press, 2006), Chap. 9.
  15. P. Cheben, “Wavelength Dispersive Planar Waveguide Devices: Echelle and Arrayed Waveguide Gratings,” in Optical Waveguides: From Theory to Applied Technologies, M. L. Calvo and V. Laksminarayanan, ed.(Taylor & Francis, London, 2007).
  16. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-indepenedent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1-2), 43–49 (2002). [CrossRef]
  17. C. R. Doerr, and K. Okamoto, Optical Fiber Telecommunications V A:Components and Subsystems, (Elsevier Inc., 2008), Chap. 9.
  18. K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996). [CrossRef]
  19. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited