OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging

Alberto de Castro, Sergio Ortiz, Enrique Gambra, Damian Siedlecki, and Susana Marcos  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 21905-21917 (2010)
http://dx.doi.org/10.1364/OE.18.021905


View Full Text Article

Acrobat PDF (1098 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an optimization method to retrieve the gradient index (GRIN) distribution of the in-vitro crystalline lens from optical path difference data extracted from OCT images. Three-dimensional OCT images of the crystalline lens are obtained in two orientations (with the anterior surface up and posterior surface up), allowing to obtain the lens geometry. The GRIN reconstruction method is based on a genetic algorithm that searches for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens. Computer simulations showed that, for noise of 5 μm in the surface elevations, the GRIN is recovered with an accuracy of 0.003 and 0.010 in the refractive indices of the nucleus and surface of the lens, respectively. The method was applied to retrieve three-dimensionally the GRIN of a porcine crystalline lens in vitro. We found a refractive index ranging from 1.362 in the surface to 1.443 in the nucleus of the lens, an axial exponential decay of the GRIN profile of 2.62 and a meridional exponential decay ranging from 3.56 to 5.18. The effect of GRIN on the aberrations of the lens also studied. The estimated spherical aberration of the measured porcine lens was 2.87 μm assuming a homogenous equivalent refractive index, and the presence of GRIN shifted the spherical aberration toward negative values (−0.97 μm), for a 6-mm pupil.

© 2010 OSA

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(110.6880) Imaging systems : Three-dimensional image acquisition
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 29, 2010
Revised Manuscript: September 7, 2010
Manuscript Accepted: September 13, 2010
Published: September 30, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Alberto de Castro, Sergio Ortiz, Enrique Gambra, Damian Siedlecki, and Susana Marcos, "Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging," Opt. Express 18, 21905-21917 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-21-21905


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. K. Pierscionek, “Presbyopia - effect of refractive index,” Clin. Exp. Optom. 73(1), 23–30 (1990). [CrossRef]
  2. W. S. Jagger, “The optics of the spherical fish lens,” Vision Res. 32(7), 1271–1284 (1992). [CrossRef] [PubMed]
  3. J. W. Blaker, “Toward an adaptive model of the human eye,” J. Opt. Soc. Am. 70(2), 220–223 (1980). [CrossRef] [PubMed]
  4. G. Smith and B. K. Pierscionek, “The optical structure of the lens and its contribution to the refractive status of the eye,” Ophthalmic Physiol. Opt. 18(1), 21–29 (1998). [CrossRef] [PubMed]
  5. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997). [CrossRef] [PubMed]
  6. R. Navarro, F. Palos, and L. M. González, “Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens,” J. Opt. Soc. Am. A 24(9), 2911–2920 (2007). [CrossRef] [PubMed]
  7. L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997). [CrossRef] [PubMed]
  8. O. Pomerantzeff, H. Fish, J. Govignon, and C. L. Schepens, “Wide-angle optical model of the eye,” Am. J. Optom. Physiol. Opt. 19, 387–388 (1972). [PubMed]
  9. I. H. Al-Ahdali and M. A. El-Messiery, “Examination of the effect of the fibrous structure of a lens on the optical characteristics of the human eye: a computer-simulated model,” Appl. Opt. 34(25), 5738–5745 (1995). [CrossRef]
  10. B. K. Pierscionek and D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vis. Sci. 66(12), 822–829 (1989). [CrossRef] [PubMed]
  11. L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001). [CrossRef] [PubMed]
  12. S. Barbero, A. Glasser, C. Clark, and S. Marcos, “Accuracy and possibilities for evaluating the lens gradient-index using a ray tracing tomography global optimization strategy,” Invest. Ophthalmol. Vis. Sci. 45, 1723 (2004).
  13. M. C. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24(5), 409–415 (1984). [CrossRef] [PubMed]
  14. D. Y. Chan, J. P. Ennis, B. K. Pierscionek, and G. Smith, “Determination and modeling of the 3-D gradient refractive indices in crystalline lenses,” Appl. Opt. 27(5), 926–931 (1988). [CrossRef] [PubMed]
  15. G. Beliakov and D. Y. Chan, “Analysis of Inhomogeneous Optical Systems by the Use of Ray Tracing. II. Three-dimensional Systems with Symmetry,” Appl. Opt. 37(22), 5106–5111 (1998). [CrossRef] [PubMed]
  16. E. Acosta, D. Vázquez, L. Garner, and G. Smith, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens,” J. Opt. Soc. Am. A 22(3), 424–433 (2005). [CrossRef] [PubMed]
  17. D. Vázquez, E. Acosta, G. Smith, and L. Garner, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens,” J. Opt. Soc. Am. A 23(10), 2551–2565 (2006). [CrossRef] [PubMed]
  18. C. E. Jones and J. M. Pope, “Measuring optical properties of an eye lens using magnetic resonance imaging,” Magn. Reson. Imaging 22(2), 211–220 (2004). [CrossRef] [PubMed]
  19. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008). [CrossRef] [PubMed]
  20. Y. Verma, K. Rao, M. Suresh, H. Patel, and P. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fish eye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007). [CrossRef]
  21. S. Ortiz, S. Barbero, and S. Marcos, “Computer simulations of optical coherence tomography A-scans: What can we learn about refractive index distribution?” Invest. Ophthalmol. Vis. Sci. 45, 2781 (2004).
  22. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008). [CrossRef] [PubMed]
  23. D. Siedlecki, A. de Castro, S. Ortiz, D. Borja, F. Manns, and S. Marcos, “Estimation of contribution of gradient index structure to the amount of posterior surface optical distortion for in-vitro human crystalline lenses imaged by Optical Coherence Tomography,” presented at the Fifth European Meeting on Visual and Physiological Optics (2010).
  24. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  25. F. Manns, A. Ho, D. Borja, and J. Parel, “Comparison of Uniform and Gradient Paraxial Models of the Crystalline Lens,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 789 (2010).
  26. A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006). [CrossRef] [PubMed]
  27. J. H. Holland, Adaptation in natural and artificial systems (The University of Michigan Press, 1975).
  28. O. N. Stavroudis, The optics of rays, wavefronts and caustics (New York Academic Press, 1972), pp. 81–95.
  29. A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through graded-index media: a new method,” Appl. Opt. 21(6), 984–987 (1982). [CrossRef] [PubMed]
  30. B. D. Stone and G. W. Forbes, “Optimal interpolants for Runge-Kutta ray tracing in inhomogeneous media,” J. Opt. Soc. Am. A 7(2), 248–254 (1990). [CrossRef]
  31. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  32. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001). [CrossRef] [PubMed]
  33. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001). [CrossRef] [PubMed]
  34. C. E. Jones and J. M. Pope, “Measuring optical properties of an eye lens using magnetic resonance imaging,” Magn. Reson. Imaging 22(2), 211–220 (2004). [CrossRef] [PubMed]
  35. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  36. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009). [CrossRef] [PubMed]
  37. R. J. Zawadzki, C. Leisser, R. Leitgeb, M. Pircher, and A. F. Fercher, “Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm,” Proc. SPIE 5140, 8 (2003).
  38. A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004). [CrossRef] [PubMed]
  39. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007). [CrossRef] [PubMed]
  40. S. G. el-Hage and F. Berny, “Contribution of the crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63(2), 205–211 (1973). [CrossRef] [PubMed]
  41. J. G. Sivak and R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23(1), 59–70 (1983). [CrossRef] [PubMed]
  42. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002). [CrossRef] [PubMed]
  43. S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28(9), 1594–1600 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (923 KB)      QuickTime
» Media 2: AVI (1747 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited