OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Coherence-controlled holographic microscope

Pavel Kolman and Radim Chmelík  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 21990-22003 (2010)
http://dx.doi.org/10.1364/OE.18.021990


View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transmitted-light coherence-controlled holographic microscope (CCHM) based on an off-axis achromatic interferometer allows us to use light sources of arbitrary degree of temporal and spatial coherence. Besides the conventional DHM modes such as quantitative phase contrast imaging and numerical 3D holographic reconstruction it provides high quality (speckle-free) imaging, improved lateral resolution and optical sectioning by coherence gating. Optical setup parameters and their limits for a technical realization are derived and described in detail. To demonstrate the optical sectioning property of the microscope a model sample uncovered and then covered with a diffuser was observed using a low-coherence light source.

© 2010 OSA

OCIS Codes
(090.0090) Holography : Holography
(110.4980) Imaging systems : Partial coherence in imaging
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.1790) Medical optics and biotechnology : Confocal microscopy
(180.3170) Microscopy : Interference microscopy
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Microscopy

History
Original Manuscript: July 21, 2010
Revised Manuscript: September 13, 2010
Manuscript Accepted: September 16, 2010
Published: October 1, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Pavel Kolman and Radim Chmelík, "Coherence-controlled holographic microscope," Opt. Express 18, 21990-22003 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-21-21990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Dunn, “Transmitted-light interference microscopy: a technique born before its time,” Proc. Royal Microscopical Soc.. 33, 189–196 (1998).
  2. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999). [CrossRef]
  3. F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006). [CrossRef] [PubMed]
  4. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006). [CrossRef] [PubMed]
  5. F. Dubois, C. Yourassowsky, N. Callens, C. Minetti, and P. Queeckers, “Applications of digital holographic microscopes with partially spatial coherence sources,” J. Phys. Conference Series 139, 012027 (2008). [CrossRef]
  6. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999). [CrossRef]
  7. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999). [CrossRef]
  8. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3(6), 847–855 (1986). [CrossRef]
  9. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005). [CrossRef] [PubMed]
  10. Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital Holographic Microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” Proc. SPIE 6186, N1860 (2006).
  11. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008). [CrossRef]
  12. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005). [CrossRef] [PubMed]
  13. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004). [CrossRef]
  14. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005). [CrossRef] [PubMed]
  15. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006). [CrossRef] [PubMed]
  16. E. N. Leith and J. Upatnieks, “Holography with Achromatic-Fringe Systems,” J. Opt. Soc. Am. 57(8), 975–980 (1967). [CrossRef]
  17. E. N. Leith and G. J. Swanson, “Achromatic interferometers for white light optical processing and holography,” Appl. Opt. 19(4), 638–644 (1980). [CrossRef] [PubMed]
  18. E. N. Leith and G. J. Swanson, “Recording of phase-amplitude images,” Appl. Opt. 20(17), 3081–3084 (1981). [CrossRef] [PubMed]
  19. E. N. Leith and B. J. Chang, “Space-invariant holography with quasi-coherent light,” Appl. Opt. 12(8), 1957–1963 (1973). [CrossRef] [PubMed]
  20. E. N. Leith, W. C. Chien, K. D. Mills, B. D. Athey, and D. S. Dilworth, “Optical sectioning by holographic coherence imaging: a generalized analysis,” J. Opt. Soc. Am. A 20(2), 380–387 (2003). [CrossRef]
  21. R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng. 38(10), 1635–1639 (1999). [CrossRef]
  22. R. Chmelík, “Holographic confocal microscopy,” Proc. SPIE 4356, 118–123 (2000). [CrossRef]
  23. R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng. 41(4), 744–745 (2002). [CrossRef]
  24. R. ChmelÍk, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt. 53(18), 2673–2689 (2006). [CrossRef]
  25. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009). [CrossRef] [PubMed]
  26. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, New York, 2006), p. 65, chapter 4.
  27. M. Born, and E. Wolf, Principles of optics (Cambridge university press, Cambridge, 2002), chap. 9, p. 548.
  28. H. Uhlířová, Microscopy of time variable biologic objects (Brno University of Technology, Brno, 2010, Ph.D. thesis, Faculty of Mechanical Engineering, Supervisor: R. Chmelík), chap. 4.
  29. F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004). [CrossRef] [PubMed]
  30. E. N. Leith and J. A. Roth, “Noise performance of an achromatic coherent optical system,” Appl. Opt. 18(16), 2803–2811 (1979). [CrossRef] [PubMed]
  31. C. J. R. Sheppard, and M. Roy, “Low-Coherence Interference Microscopy,” in Optical Imaging and Microscopy, P. Török and F. J. Kao, eds., (Springer, Berlin, 2003), Chap. 11, 267–273.
  32. P. C. Sun and E. N. Leith, “Broad source image-plane holography as a confocal imaging process,” Appl. Opt. 33(4), 597–602 (1994). [CrossRef] [PubMed]
  33. H. J. Caulfield, “Holographic imaging through scatterers,” J. Opt. Soc. Am. 58(2), 150–152 (1968). [CrossRef]
  34. E. N. Leith, C. Chen, H. Chen, Y. Chen, J. Lopez, P. C. Sun, and D. Dilworth, “Imaging through scattering media using spatial incoherence techniques,” Opt. Lett. 16(23), 1820–1822 (1991). [CrossRef] [PubMed]
  35. E. N. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P. C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9(7), 1148–1153 (1992). [CrossRef]
  36. G. Indebetouw and P. Klysubun, “Optical sectioning with low coherence spatio-temporal holography,” Opt. Commun. 172(1-6), 25–29 (1999). [CrossRef]
  37. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25(4), 212–214 (2000). [CrossRef]
  38. G. Indebetouw and P. Klysubun, “Spatiotemporal digital microholography,” J. Opt. Soc. Am. A 18(2), 319–325 (2001). [CrossRef]
  39. M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13(1), 46–52 (1996). [CrossRef]
  40. H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009). [PubMed]
  41. L. Lovicar, J. Komrska, and R. Chmelík, “Quantitative-phase-contrast imaging of two-level surface described as 2D linear filtering process,” Opt. Express 18(20), 20585–20594 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 3 Fig. 2
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited