OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography

Xuan Liu and Jin U. Kang  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22010-22019 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We applied compressed sensing (CS) to spectral domain optical coherence tomography (SD OCT) and studied its effectiveness. We tested the CS reconstruction by randomly undersampling the k-space SD OCT signal. We achieved this by applying pseudo-random masks to sample 62.5%, 50%, and 37.5% of the CCD camera pixels. OCT images are reconstructed by solving an optimization problem that minimizes the l1 norm of a transformed image to enforce sparsity, subject to data consistency constraints. CS could allow an array detector with fewer pixels to reconstruct high resolution OCT images while reducing the total amount of data required to process the images.

© 2010 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.3055) Imaging systems : Information theoretical analysis

ToC Category:
Imaging Systems

Original Manuscript: August 9, 2010
Revised Manuscript: September 10, 2010
Manuscript Accepted: September 20, 2010
Published: October 1, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Xuan Liu and Jin U. Kang, "Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography," Opt. Express 18, 22010-22019 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Brezinski, Optical Coherence Tomography: Principles and Applications, (Academic Press, London, 2006).
  2. B. E. Bouma, and G. J. Tearney, Handbook of Optical Coherence Tomography, (Informa Healthcare, New York, 2001).
  3. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron. 11(4), 799–805 (2005).
  4. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11772 . [PubMed]
  5. J. U. Kang, J. Han, X. Liu, K. Zhang, C. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010).
  6. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 . [PubMed]
  7. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183 . [PubMed]
  8. X. Liu, X. Li, D. Kim, I. Ilev, and J. U. Kang, “Fiber Optic Fourier-domain Common-path OCT,” Chin. Opt. Lett. 6(12), 899–903 (2008).
  9. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-6-4842 . [PubMed]
  10. M. Balicki, J. Han, I. Iordachita, P. Gehlbach, J. Handa, J. U. Kang, and R. Taylor, “Single Fiber Optical Coherence Tomography Microsurgical Instruments for Computer and Robot-Assisted Retinal Surgery,” Proceedings of the MICCAI Conference (2009)
  11. K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009). [PubMed]
  12. D. L. Donoho, “Compressed Sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
  13. E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
  14. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007). [PubMed]
  15. Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010). [PubMed]
  16. N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE 7570, 75700L (2010).
  17. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007). [PubMed]
  18. Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Lett. 34(10), 1516–1518 (2009). [PubMed]
  19. J. Shewchuk, “An introduction to the conjugate gradient method without the agonizing pain,” Technical Report CMUCS-TR-94–125, Carnegie Mellon University, (1994).
  20. S. M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE 2869, 243–253 (1997).
  21. S. P. Monacos, R. K. Lam, A. A. Portillo, and G. G. Ortiz, “Design of an event-driven random-access-windowing CCD-based camera,” Proc. SPIE 4975, 115 (2003).
  22. D. Donoho and I. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika 81(3), 425–455 (1994).
  23. J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms using min–max interpolation,” IEEE Trans. Signal Process. 51(2), 560–574 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited